Clustering and Topological
Data Analysis of Single-Cell

RNA Sequencing Data

COM3001 Final Year Project Report
2020/2021

University of Surrey

Faculty of Engineering and Physical Sciences
Department of Computing

Student: Tom Wilson
URN: 6515762
Supervisor: Tom Thorne ‘<

Ahctract

Computational biology is the use of computational methods to interpret biological systems and data. Biological
experiments produce large amounts of data that would be hard to analyse by hand in a lab and so algorithms and
models can be applied to work out previously unresolved problems.

This report looks at the application of dimensionality reduction techniques, clustering methods and topological
data analysis commonly used in artificial intelligence to interpret one simulated and two real datasets produced
by single-cell RNA-sequencing experiments. The goal being to reveal hidden variation in gene expression from

cells of the same type.

The first part of the study focuses on creating an optimised autoencoder for the first dataset sc_10x. An
autoencoder is then trained for each dataset and the suitability of applying encoding, standardization and PCA
before clustering is compared and evaluated against a known ground truth. Six different traditional clustering
methods are applied with focus on k-means and agglomerative hierarchical clustering. In addition, dimensionality
reduction techniques ICA and NMF, t-SNE and spectral biclustering are also tested, though not as extensively. In
the second part, the Mapper algorithm is utilized to view the high-dimensional space of each dataset.

Overall, this study has been highly successful at clustering genetic differences between cell lines with two out of
three datasets achieving 99.9% and 100% accuracy respectively. It was discovered that these state-of-the-art
results can be achieved through the correct combination of pre-processing and optimisation of the number of
features to cluster through dimensionality reduction. This report could therefore be used as a guide of good
practices when working with scRNA-seq data.

Code written in Python and R across two Jupyter notebooks and is freely available from:
https://github.com/TomMakesThings/Clustering-and-TDA-of-scRNA-seg-Data.

A I‘Illﬂf\\lllﬂfl"f\mf\l’\+l‘

| would like to thank Luyi Tian for providing the open-source dataset sc_10x, Luke Zappia, Belinda Phipson and
Alicia Oshlack for making the gene count simulation tool Splatter, Zeisel et al. for their dataset of mouse cortex
RNA counts and van Veen et al. for developing Kepler Mapper.

Finally, | would like to thank Stella Kazamia for her feedback, and my project sponsor, Dr Tom Thorne, for his
continued support and guidance throughout the project.

https://github.com/TomMakesThings/Clustering-and-TDA-of-scRNA-seq-Data
https://github.com/LuyiTian/sc_mixology
https://www.bioconductor.org/packages/devel/bioc/vignettes/splatter/inst/doc/splatter.html
http://linnarssonlab.org/cortex/
http://linnarssonlab.org/cortex/
https://kepler-mapper.scikit-tda.org/en/latest/

Abstract

Acknowledgements

Table of Figures
Table of Tables

Table Of EQUALtIONS.......c.ocuieeeeeeeeeeee ettt se s s sene
Terms, Abbreviations and NOtatioN.........c.ccceeeeeeeeceeerceeeeeeeeeens

TEIMNS ettt be et e et e s eseebe b esseneebesensenebensenes

Acronyms and Abbreviations...........cceeeeeeenrereseenesesseseeennes
Mathematical NOtationccoeeeverieeececcceceee e
Statement Of ELhiCS ...

EtHICS REVIEW ...ttt se e ssenenes

1. INtrOdUCHION ..t s b sene

1.1 Problem Background...........cccceeeeeeeveeneneeeeeeeeeeererevenens
1.2 ProjJECt DESCIIPLION ..ottt b e s e s b e e s b e e s e b e e s ebesa s esesessebesassesesarssan
1.3 AIMS and ODJECLIVES ...t

1.4 YN (ool O g (< o = YO

1.5 Report STruCtUre ...

2. Literature Review
21 Single-Cell RNA Sequencing

2.0 1 PUIMPOSE ceeeteeerereteeereenesesesesesesesesssesesssesesessesessssssenens
2.1.2 HOW It WOTKS....ucoeeeremenececinenneineaeeeneeessessessessesseennes
2.1.3 Benefit Over Alternative Techniques............ccceuu.....
214 ChalleNES....u et resesesesene
2.2 Data Encoding Techniques..........cceeeeieveveeeeeerererererenens
2.2.1 Principal Component Analysis (PCA)........ccccceueverennn..
2.2.2 AULOENCOMENS......oceiceeeienrcnreneieneiee e seaenene
2.1.2 PCA vs AUtOENCOETS......ccoeueurereeeeeieineeeeieieeeeaeneieenes
2.1.3 CONCIUSION ..t seaenene
2.2 Neural Network Optimisationcceeeeeeeeveererenrverennne.
2.2.1 Optimisers and Learning Ratecccoevevverrvrrveerennen.
222 BatCh Size .
2.2.3 EPOCNS ottt erenens
224 CONCIUSION ..ttt ssesesens
2.3 Clustering Techniques......

2.3.1 K-Means Clustering
2.3.2 Hierarchical Clustering

2.3.3 K-Means vs Hierarchical Clusteringccccceevevevenenee.
2.3.4 CONCIUSION ..t ssesesene
24 Topological Data Analysis.........ccceeeeeeerererereceerereeeeeeenas
241 PUMPOSE ...oeeveteereveteeetereeevessenesesssesesssesessesesesssesessasesenens
2.4.2 Topological Signatures.........cccceeeeevevevevererrsrereeererenens
2.4.3 The Vietoris-Rips COMPIEX.......cureierererieeererireereriererennns
2.4.4 Persistent HOMOIOZYccceueveverereeeeeeeeeeeeeeeeeveienene
25 Datasetscocveureeereneereeineeineereesee ettt

2.5.1 Human Lung Adenocarcinoma Benchmark Dataset

O 0 V0 00O N U, e

N R PR PR R PR R R R PR R R R R R R R B R R R R R B R R R R
O V0V 0V V0V 0O 0 0 N N O OO Ll n it L D DN DN DD WDNIDNDNDMNDNMNDNDNRRLRO

N
o

N
o

N
o

N
o

N
iy

N
iy

N
iy

2.5.2 Splat Simulated Evaluation Dataset.........cccoeeeerereeeeeeeeeeeeeeeeeee e 21
2.5.3 Mouse Cortex Evaluation Dataset.........ccoceeeverereueinieineeineeneeineeseeiseesseesseesseesseesseseseens 21
2.6 Machine Learning Libraries 22
2.6.1 PyTorch..eeeeecevenee. 22
2.6.2 TenSOrFIOW With KEras ...ttt sseaessesessesessesessensssenes 22
2.6.3 PyTOrch VS TENSOIFIOWcouiiiieririeicestetetces sttt asssesssssssesssssssssssssssnes 22
2,64 CONCIUSION ..ottt sttt st s s ss st s e s s st ssesssssssessssssssssesssssassnsesssnssnsass 22
Requirements and SPeCifiCation........ccveecceeieirerereeireese ettt ssesens 23
3.1 REQUIFEIMENTS ...ttt sttt sttt st st b bbb sssasasnans 23
3.1.1 Sub-Objectives and PrioritiSationcccceeireeereeinirenessisisesessessesssessessssssssssssssssssssesessssnes 23
3.2 Hardware and Software Specification ... 24
3.2.1 Hardware SPeCifiCation........cccceeeereeeeeeeererererereetee e eeeesesenesesese s se e aeann 24
3.2.2 Software SPeCifiCation ...ttt b e b e aebenens 24
3.3 FEASIDIILY ANGIYSISocveverererereteteeteeeeeee ettt s s s bbb s bbb e asasasasesenenenes 24
3.3.1 Technical FEasibDility ...t ssssenenes 24
3.3.2 LEBAI FEASIDIIILY ..ottt ettt se bbbt et nennes 25
3.3.3 Economic FEaSIDIlItYcceveveverererereteeee et en s sesesene 25
3.3.4 Scheduling Feasibility ... re s s sene 25
3.4 Planning 25
3.4.1 Workplan 25
3.4.2 RISK ASSESSMENL «...ucvuiucrrerncueaeaceeenetsenesessese s s ssessesses s ssessesssssessessssssesessesesssssessssssessesns 26
System and EXPeriment DESISN.......cccerereeieieeeeeeeeeereerererereresese e ssesesessesesesesesesesesens 28
4.1 SYSEEM DESIZN ettt ees e b e s b e a b ese s ebe s s besassebessrsebessrsesessasesensrsesensrsesan 28
411 AULOENCOTE ...ttt setsessese st ssess s e sessess s bbbt s s esssaessesns 28
41,2 ClUSEEIING vttt ettt s s s bbb bebebebebe s s s asasassaseseseseseneseserebene 31
4.1.3 Topological Data ANAIYSISc.ccvererererererererererereeeieeeeesesesesesesesesesesesese s ssssssssssenes 33
4.1.4 Creating SIMUIAted Data.........oeeeeeeeeeeeerecrereteeeeeeeeeeses e resesesesese e senn 33
4.1 EXPEIMENT DESIZN ..ottt ettt s st s et ettt e se s s sasasasssasasssssssnsnanes 34
IMPIEMENEALION.....eeeereteetereeeeeee e a b bbb s e bbb e s bebess s ebesnesesennene 36
5.1 Setting Up the Datasets..........eieee s as 36
5.1.1 Opening the Data......cceeeeeeeeeirerisissieeetee s seseseeesessssssesesssssesesens 36
5.1.2 Splitting Data into BatChes........coeeveveieieieeeececceceereeseessste e esesssennes 36
52 AULOENCOTET ...ttt sttt sttt st st se st st s ssenes 36
5.2.1 LitAutoencoder Class 36
5.2.2 K-Fold Cross Validation 37
5.2.3 Autoencoder Training 37
524 Saving Model State tO File.......eeeeeeceeececcceeeeeeere sttt aeas 37
525 AUt0eNCOAEr TESHING ..ottt ssnnnes 38
5.3 CIUSEEIING .ttt ettt ettt ss s s st et eaesebesebebasasasasasann 38
5.3.1 Set up Data and Labels..... ettt v er e ese e 38
5.3.2 KeMEANS. .ttt ettt sttt sttt 38
5.3.3 Agglomerative Hierarchical CIUStEriNgccccceieieevererereeeeee e 40
5.3.4 Alternative Clustering AlZOritNMS.........cceieieeeecieeeeee et nenenes 40
54 Topological Data ANAIYSIS.......ccceeeeeeeeeeeeetreese et s st et ese s s sns 40
541 KEPIEE MAPPEE .ttt se e ese b s s s ss s se s esesessesesensebessasesessasssessasesaneas 40
5.5 Creating Simulated Data ...t ean 41
5.5.1 Opening the Benchmarking Dataset ... 41

5.5.2 Creating a New Dataset
6. Testing and Validation..................
6.1 Datasets

41

43

6.1.1 Benchmarking Data
6.1.2 Simulated Data................

6.1.3 Mouse Cortex EValuation Data........c.cceeeeeriieecrcieeceesecseesteseessesesesesessssesssesessssssessssesess

6.2 Autoencoder Optimisation

6.2.1 Testing the INitial MOAEL.......ccovuviereieieeecee sttt sesees

43

43
a4

45

45

45
46
47
48
49
49
51

51

51

6.2.2 LEAMINE RALE ettt ettt sttt s s ss st sssssnsssenaes
6.2.3 BatCN SIZE ottt sttt en
6.2.4 OPLIMISEr SEIECLIONovvereretererereteeeeeeeeeee e sesesenenes
6.2.5 HIAAEN LAYEIS ...ttt s s oo esas s s esesesesesesebesesesessssasann
6.2.6 Activation FUNCHION.......ccciiiiiiccccccccccccececece e
6.2.7 NUMDEI Of EPOCRS ...ttt ssesenenes
6.2.8 Summary of Autoencoder Optimisation...........ccceerevereeeeeeeeeeeeeeeeeeeeererererenene
6.3 Training the OptimiSed NELWOIK ...t as
6.3.1 K-Fold Cross Validationcceceeeencenceneeneneeeeeereinenessesseseeenessessessessessescssennens
6.3.2 Training, Validation and Testing RESUILS............ccceveverereeerereeeeeeeeeeeeeererererenene
6.4 CIUSEEIING et re e
6.4.1 Ground Truth of Data
6.4.2 K-MEANS.....uiiiiciectictreeiese e s
6.4.3 Agglomerative Hierarchical CIUSLEIINGccoevererererererereeeeeeeeeeeeererererevenene
6.4.4 Visualising PCA GENE EXPIrESSIONoueeieeeeeereeeieerererererereseseesessssssssssssesesesesesesesesesesessssssssasans
6.4.5 ARernative AlZOITNMSc.ccveveverieeeeeeeeeeee e es s s s s rebesene
6.4.6 BiCIUSTEIING ettt be bbbt et b e e b e s s s eneseneneseresne
6.5 TopOoIlogical Data ANAIYSIS......cceerirererereriieeeeeereereeerereserere e sssssesesesesesesesesens
6.5.1 Benchmarking DAtcceeerererererereieeeeeeeesesesesesesesesesesesesesssssssssssssessesenes
6.5.2 SIMUIALEA Data ...ttt ettt st
6.5.3 MoUSE COrtex Data.....cceeeveeurerirereeeieinereeeie ettt tsase e seanen
6.5.4 Comparing TDA t0 CIUSTEIING ..ottt ssese sttt s sssssnnas
7. Conclusions and FULUre WOTK.........cccocevcicinineininernicinecineeeeeecsenesesesesesensesessesessesens
7.1 OVEIVIBW ...ttt sttt st sttt sss s sssaes
7.2 Evaluation Against ODJECLIVES ...ttt ss s es s s s s s sns

7.3 Results and Recommendations

7.4 Future Work........
7.5 Final Statement...

References

Appendix

APPENAIX A = ELNICS REVIEW ...ttt s bbb bbb ebe s b b e s ebesennenesensene

Sage-HDR Form........cccovvvevevevnnnee.
Sage-AR Form

Appendix B - Experiment Results

Testing the INItIal MOAEN ...ttt ettt et b bbb an

Activation Function..........ccc.......
Training the Optimised Network

Clustering

51
52
54
54
56
65
68
71
76
78
78
78
78
78
79
79
79
80
81
81
82
87
87
87
89
91
91
91
92
93

Tﬂlﬁ\lr\ I\" l::ﬂrl 1ry¥ac

Figure 1: RNA SeqUENCING SLEPS [F7] ..vvreeeeeeeeeeeeteteee e teveveee et s s sese s st se s s sesesssaeaes 14
Figure 2: Single-cell vs bulk RNA sequencing [11]coeeeeeeeereeeeeeereeeeee e sesennene 14
Figure 3: Example of PCA example showing two principal components [16]..........ccccceueverernne... 15
Figure 4: Standard deterministic autoencoder architecture (left) and variational autoencoder architecture (right) [19]............ 16
Figure 5: Example showing validation accuracy over time for different optimisers [23] 17
Figure 6: Example of learning rate optimisation using LR Range Test [26] 17
Figure 7: Learning rate comparison [24]........cccoceveeuerrereensesrnsessessssesssessssesessens 17
Figure 8: Trade-off between training and testing accuracy [32]ccoeveerreceresnesireeseessee s ssessenens 18
Figure 9: Comparison between underfitting and overfitting [101].......cccovcereeeerrecerrecereeseeeeesese e 18
Figure 10: K-means clustering example [102]........cccouverreeernecernecsreeesiesesiessesssesessenns 19
Figure 11: Example of agglomerative hierarchical clustering dendrogram [33] 19
Figure 12: Low-dimensional SIMPlCES [105].....ceieieirrierrereieissiessiesssssssesssesssessssesssessssssssssssssssssesssess 20
Figure 13: Example in which a simplicial complex is generated by increasing € [43] 20
Figure 14: ProjeCt tIMELaDIE. ...ttt et s s es s bbb bbb e asasanan 26
Figure 15: Flowchart for training and testing autoencoder........................... ettt sens 28
Figure 16: Autoencoder architecture diagram...........cccoceeveeererererereeeenenne. ettt ettt st tenns 29
Figure 17: Non-linear activation functions [107]......... ettt aens ettt aran 30
Figure 18: 5-fold cross validation [108]........cceeveeeeerereereeerereeeeererereeenenes e 30
Figure 19: Flowchart of clustering stepscceeeeeeeereeeeeeeeeeeerereerereee e ettt sens 31
Figure 20: Elbow method (left) and silhouette coefficient (right) [36] 32
Figure 21: Bipartite graph matching labels to predicted clusters...... e rene 32
Figure 22: Mapper applied t0 2D data [1OD] ...ttt ssssesessssssesessesassesenees 33
Figure 23: Top left single, top right groups, lower left paths and lower right batches [72] 34
Figure 24: DataFrame showing 150 test samples from the benchmarking datasetcceevevreeunne. 36
Figure 25: Checkpoint (CKPT) and test, train and validation DatalLoader (PTH) files for the benchmarking autoencoder......... 37
Figure 26: Reduced size checkpoint (CKPT) and test, train and validation tex files for the benchmarking autoencoder............ 38
Figure 27: Print screen of assigning numerical values to the cell lines labels of the benchmarking dataset 38
Figure 28: Example graph showing cell lines of the benchmark dataset and its accuracy, ARI and silhouette coefficient......... 39

Figure 29: Example showing the effect of increasing principal components on ARI for the encoded benchmark dataset......... 39
Figure 30: Example graphs revealing the gain in variation with the addition of each principal component for the encoded

DENCNMAIKING Atcveveeeeeeceeetceee et s bbb asasesnenes 40
Figure 31: Example of testing ICA with different numbers of components on the benchmarking data 40
Figure 32: (Clickable) Testing epsilon values 0.05, 0.2, 0.4 and 0.8 for the benchmarking dataset 41
Figure 33: (Clickable) Testing 2, 5, 25 and 50 cubes for the benchmarking dataset..........cccccovvevvunee.. 41
Figure 34: Single group of simulated cells (top) and four groups of simulated cells (lower) 41
Figure 35: Comparing distribution of mean gene expression between Splat and real data 42
Figure 36: Print SCre€n Of SC_L0X ...cuivviereeieereeeereeeereeeeseeaeseesesesessesesssesesssesessssssessssesenens 43
Figure 37: Print screen of benchmarking data cell lines 43
Figure 38: ARI for a range of clustering techniquEs [79] ... 44
Figure 39: Print screen of benchmarking ARl ...ttt sessesesnnes 44
Figure 40: Simulated data group labels 44
Figure 41: Print screen of simulated data............cccoreeeceeccecceeceeeeeresese s seseaas 44
Figure 42: evaluation data group [abels.......... oot eeeenes 45
Figure 43: Print screen of evaluation data 45
Figure 44: Loss (MSE) across 40 epochs for first run 45
Figure 45: Loss (MSE) across 40 epochs after ShUfflingccceeeeveeeerrecereeceieeesreeeeeses e 46
Figure 46: Loss (MSE) after 40 epochs for 5 different learning rates.........cccccccvveevreennnes 46
Figure 47: Learning rate finder results (left) and MSE over epochs for 0.000794 learning rate (right) 46
Figure 48: Training loss (MSE) over 40 epochs for 10 batch sizes.........ccccceeeevevneneee. 47
Figure 49: Testing and training loss (MSE) after 40 epochs for 10 batch sizes 47
Figure 50: Testing and training loss (MSE) after 40 epochs for five optimisers 48
Figure 51: Training loss (MSE) over 40 epochs for five different optimisers.........cccoeeuvveerrreennnes 48
Figure 52: Training and validation loss (MSE) across 100 epochs for Adam and AdamW 48
Figure 53: Training loss (MSE) over 40 epochs for 1, 3 and 5 hidden layersc.ccccvueererernee. 49
Figure 54: Training and validation loss (MSE) over 40 epochs for 5 hidden layers (left) and 3 hidden layers (right).................... 49
Figure 55: Testing and training loss (MSE) after 40 epochs for hidden layer activation functions 50
Figure 56: Training loss (MSE) after 40 epochs for combinations of activation functions 50
Figure 57: Training and validation loss (MSE) after 400 epochs..........ccoueeeeeeirecrccereteeeeeeeeree e 51
Figure 58: Benchmarking data autoencoder’s training and validation loss over 250 epochs 52
Figure 59: Simulated data autoencoder’s training and validation loss over 250 epochs 52
Figure 60: Mouse cortex data autoencoder’s training and validation loss over 250 epochs 53
Figure 61: Average loss (MSE) per mini-batch during testing of benchmarking data autoencoder (top left), simulated (top

right) and mouse cortex (IOWEK Eft).......c..ocueeeieeeeeeee ettt et ees 53
Figure 62: (Clickable) 2D plot of benchmark data’s cell INes...........ccoovveeueeeieiceeicieeeeeceeeee e 54
Figure 63: (Clickable) 3D plot of benchmark testing data’s cell lines from three angles 54

Figure 64: 2D plot of simulated data’s expected groups.........ccceeeeeeeereeeeeeeeierereeeeee s 55

https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994435
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994437
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994440
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994442
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994443
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994444
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994445
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994446
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994448
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994451
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994452
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994454
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994455
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994456
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994462
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994463
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994468
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994469
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994471
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994472
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994474
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994476
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994478
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994479
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994480
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994481
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994482
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994483
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994484
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994485
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994486
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994487
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994489
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994490
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994491
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994495
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994495
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994496
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994498

Figure 65: 3D plot of simulated test data’s groups from three angles...............cccoouue.... 55

Figure 66: (Clickable) 2D plot of mouse cortex data’s expected groups..........cccceeeeevereunnee. 55
Figure 67: (Clickable) 3D plot of mouse cortex test data’s expected groups from three angles 55
Figure 68: EIbow method (left) and silhouette coefficient (right) for benchmarking data 56
Figure 69: (Clickable) K-means prediction (top left), actual clusters (top right) for 2 PC encoded benchmarking data............... 56
Figure 70: (Clickable) K-means prediction (top left), actual clusters (top right) and difference (bottom) for 2 PC encoded
DENChMAIKING Ata.....cocveee ettt ettt esnenes 57
Figure 71: (Clickable) K-means prediction (top left), actual clusters (top right) and difference (bottom) for 2 PC pre-
standardized encoded benchmarking data.........cccceeeeeereieirineereeessee st sseseasenees 57
Figure 72: (Clickable) K-means prediction (left), actual clusters (middle) and difference (right) for 3 PC encoded benchmarking
data With StaNAardiZation...........c.cceeeceee e s s s bbb e s s enenenes 58
Figure 73: (Clickable) K-means prediction (left), actual clusters (middle) and difference (right) for 3 PC encoded benchmarking
data Without StaNdardiZation ...t a bbb s s s s s enebebebene 58
Figure 74: K-means accuracy for unstandardized encoded data when testing different numbers of principal components (left)
and a plot showing the incorrectly identified cell for 4 PCs (right) (Clickable)..........ccceveeveveveunnese. 58
Figure 75: K-means accuracy for standardized encoded data when testing different numbers of principal components (left)
and a 2D plot showing the incorrectly identified cell for 7 PCs (right) (Clickable).........ccccevevrneneee.. 59

Figure 76: (Clickable) K-means using 2 PCs from the raw unencoded data (left) and standardized unencoded data (right)......59
Figure 77: (Clickable) Incorrectly identified cells from k-means using 2 PCs for the raw unencoded data (left) and

standardized unencoded data (FZNt)ceeeeeeeeeeieeeeeee et sseens 60
Figure 78: Comparing accuracy to number of principal components for k-means on the raw unencoded data (left) and
standardized unencoded data (FIZNt)ceeceeeeeeeeeereeee e st senneens 60
Figure 79: (Clickable) K-means prediction (left), actual clusters (middle) and difference (right) for 3 PC original benchmarking
ALttt ettt b bbb bbb b bR bbb bbb ebebebebebebebeaeaeseasasasasesanennen 60
Figure 80: (Clickable) K-means prediction (left) and actual clusters (right) for 3 PC original benchmarking data with
SEANAAIAIZALIONeveeeeeeeeee ettt b bbb b es s s s s enesenerenene 60
Figure 81: EIbow method (left) and silhouette coefficient (right) for simulated data.......cccoevvverevnneeee. 61
Figure 82: (Clickable) 2 PC k-means on the encoded simulated data without standardization 61
Figure 83: (Clickable) 2 PC k-means on the unencoded simulated data without standardization 62
Figure 84: (Clickable) Predicted clusters (left) and incorrect cells (right) for k-means using 2 PCs on the encoded simulated
ALttt ettt b e bbb bbb bbb Rt b b bbb ebebebebebebesese s asasasasasenesenen 62
Figure 85: (Clickable) Predicted clusters (left) and expected groups (right) for k-means using 2 PCs on the unencoded
SIMUIAEEA AL c.e.eieeeieeeeeeeeeeeete et b bbb s s s s esebesebebesesesessan 62
Figure 86: (Clickable) 3D plot of predicted clusters (left) expected groups (right) for k-means using 6 PCs on encoded
SIMUIAEEA AL c.e.eieieieeeeeeee et b bbb e s s s s b esebesebesesesesessan 63
Figure 87: Elbow method (left) and silhouette coefficient (right) for mouse cortex data 63
Figure 88: (Clickable) 2 PC k-means on the unencoded mouse cortex data without standardization (left) and BackSPIN labels
(7= 1 OO 64
Figure 89: (Clickable) 2 PC k-means on the unencoded mouse cortex data after standardization 64
Figure 90: Finding the best number of principal components (left), and k-means predictions on the encoded mouse cortex
data with standardization fOr 15 PCS (ClICKADIE)oveveveveeeeieieeeeeeeeteeeteeetete et eseesesesessssssssssssssssssssesenons 64
Figure 91: (Clickable) K-means predictions on the standardized, unencoded mouse cortex data with 16 principal components
AN t-SNE With PEIPIEXILY S0....eoveriieeriiiereeereeteeree et ss e s s ss s esesssesessesebessesesessesesenssesensssesensene 65
Figure 92: (Clickable) K-means on the standardized, unencoded mouse cortex data with 16 principal components and t-SNE
perplexity 5, 10, 20 (top) and 50, 300, 600 (IOWEF)c.oeeeerereeererererreeeeerereeeeeseerseesaeaenes 65
Figure 93: Dendrogram for benchmarking data agglomerative hierarchical clustering 66
Figure 94: (Clickable) Hierarchical clustering prediction (left) and actual clusters (right) for 3 PC standardized unencoded
beENChMArKING data ..ottt et nsnnenes 66
Figure 95: (Clickable) Hierarchical clustering prediction (left) and incorrect cell (right) for 2 PC standardized encoded
benchmMarking data ...ttt e eaan 67

Figure 96: Dendrogram for simulated data agglomerative hierarchical clustering 67
Figure 97: (Clickable) Hierarchical clustering prediction (left) and incorrect cell (right) for 6 PC encoded benchmarking data.67

Figure 98: Dendrogram for mouse cortex data agglomerative hierarchical clustering.........cccccoceuvvvereuennnee. 68
Figure 99: (Clickable) Hierarchical clustering prediction (left) actual clusters (middle) and incorrect predictions (right) for 9 PC
standardized unencoded MOUSE COrteX data.......coeueieveieeeieecceceee e snnes 68
Figure 100: Loading scores for the top 20 principal components against 20 genes for the unstandardized (left) and
standardized (right) benchmarking data...........c.coocoeiceeeceer ettt et 69

Figure 101: 10 genes with the highest loading scores for the first three principal components of the benchmarking data......69
Figure 102: Loading scores for the top 20 principal components against 20 genes for the unstandardized (left) and

standardized (right) simulated data..........ccoeeeueeieeeeeceece ettt a s 70
Figure 103: 10 genes with the highest loading scores for the first three principal components of the simulated data.............. 70
Figure 104: Loading scores for the top 20 principal components against 20 genes for the unstandardized (left) and

standardized (right) MOUSE COrteX data.......c.cmeiiieieieieeeeeeteeee ettt ettt benene 70

Figure 105: 10 genes with the highest loading scores for the first three principal components of the mouse cortex data....... 71
Figure 106: Histogram displaying best accuracy of the six clustering algorithms, along with the optimal number of principal
components and whether the benchmarking data was encoded or not............cccccccueueuune..e. 71
Figure 107: (Clickable) Hierarchical clustering prediction (left) and incorrect cell (right) for 3 PC standardized unencoded
DENChMArKING ata.....cocveeee ettt ettt et nannenes 71

https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994500
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994505
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994505
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994540
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994540

Figure 108: Histogram displaying best accuracy of the six clustering algorithms, along with the optimal number of NMF basis

components and whether the benchmarking data was encoded or not..........ccccccueueueunee.e. 72
Figure 109: (Clickable) Hierarchical clustering prediction (left) and incorrect cell (right) for 3 IC standardized unencoded
DENChMAIKING Ata.....coceceeeee ettt b et et sesenenes 72
Figure 110: Histogram displaying best accuracy of the six clustering algorithms, along with the optimal number of
independent components and whether the benchmarking data was encoded or not..............ccccceueuueeeee. 72
Figure 111: (Clickable) K-means prediction (left) and true cell lines (right) for 2 NMF basis components on standardized
DENCHMAIKING At ...ceiieeeee ettt s s sens 72
Figure 112: (Clickable) Gaussian mixture prediction (left) and identifying one of two incorrect cells (right) for 4 NMF basis
components on standardized benchmarking dataccoeveeeveerrerecssesesereeeeseeene 73
Figure 113: Histogram displaying best accuracy of the six clustering algorithms with t-SNE, along with the optimal number of
PCA components and whether the benchmarking data was encoded or not.........ccccceueverrunnee.. 73
Figure 114: (Clickable) Mini batch k-means prediction (left) and incorrectly identified cells (right) for 2 principal components
and t-SNE for the encoded, standardized benchmarking data...........ccoeeeeeeeeeeeeeeeceeeeeeeeeee 73
Figure 115: Histogram displaying best accuracy of the six clustering algorithms, along with the optimal number of principal
components and whether the simulated data was encoded or NOt..........c.ceeeeeeeieeeeeeeeee e 74
Figure 117: Histogram displaying best accuracy of the six clustering algorithms, along with the optimal number of
independent components and whether the simulated data was encoded or not............cccccueueuneeee. 74
Figure 116: (Clickable) BIRCH prediction (left) and cell lines (right) for 4 principal components on standardized benchmarking
(o = - OO U PP UPTTPT 74
Figure 118: (Clickable) BIRCH prediction (left) and cell lines (right) for 4 independent components on standardized
DENCAMAIKING ata.....coeveeeeceeeeee et s bbb bbb esesennenes 74
Figure 119: Histogram displaying best accuracy of the six clustering algorithms, along with the optimal number of NMF basis
components and whether the simulated data was encoded OF NOt..........ccceeverererereeeieeeeeeeeererere e 75
Figure 120: (Clickable) Agglomerative hierarchical prediction (left) and true cell lines (right) for 11 NMF basis components on
unstandardized benchmarking data...........cceeieeeeeee e re e 75
Figure 121: Histogram displaying best accuracy of the six clustering algorithms, along with the optimal number of t-SNE
components and whether the simulated data was encoded OF NOt..........ccceveveereereeeeeeeeeeeeerere e 75
Figure 114: (Clickable) Spectral clustering prediction (left) and excepted groups (right) for 2 principal components with t-SNE
for the encoded, unstandardized benchmarking data getting 100% accuracyccccceeverererennee. 76
Figure 114: (Clickable) Spectral clustering prediction (left) and excepted groups (right) for 2 principal components with t-SNE
for the encoded, unstandardized benchmarking data getting 50% accuracyceceeeererenennne. 76
Figure 122: The original gene expression of the mouse cortex data (left) and bicluster regions (right) 77
Figure 123: Gene expression of the standardized mouse cortex data.........ccccceererererennnne. 77
Figure 124: Rearrangement of the matrix after biclustering (left) and identification of the bicluster regions (right) for the
standardized MOUSE COrtEX data.......cccceeieiereieieieree ettt s st s s asaeees 77
Figure 125: (Clickable) Simplicial complex of benchmarking data (left) and simulated data (right) 78
Figure 126: (Clickable) Simplicial complex of the mouse cortex data........ccccoeevvevncnenece. 78
Figure 127: Print screen from testing the initial model showing a batch’s input tensor, output tensor, accuracy, and average
ACCUIACY ACrOSS All DALCRES......vceeeeveeeeteetete et b bbb s e b e bbb be s s ebensenenan 91
Figure 128: Two batch’s input tensors, outputs, accuracy, and average accuracy across all batches for ReLU-ReLU (left) and
RELU-LINEAN (FIZNL) cvuvuvreeteeeieteteeeeeetete ettt st ss bbb st b s e b sas s e b st sas b s e b sanbenansenas 91
Figure 129: Two batch’s input tensors, outputs, accuracy, and average accuracy across all batches for ReLU-PReLU (left) and
LiNEAr-LINEAr (FIZHL)...ucveveiveeeeieeeieeeteiete ettt s s bbbt s bbb b st b sas s sasssassnans 91
Figure 130: Results of 5-fold cross validation for the benchmarking dataset 92
Figure 131: Results of 5-fold cross validation for the simulated dataset 92
Figure 132: Results of 5-fold cross validation for the mouse cortex dataset............... 92
Figure 133: Batches and accuracy after training the simulated data autoencoder 93
Figure 134: Batches and accuracy after training the benchmarking data autoencoder 93
Figure 135: Batches and accuracy after training the simulated data autoencoder...........cccocoeveuvueunnncne 93
Tahlae Anf Tahlac

Table 1: Terms 9
Table 2: Acronyms and Abbreviations 10
Table 3: Mathematical Notation.........cccoceeeeeceeeeeeenenee. 10
Table 4: Report structure........cceeveeeevereeenenne 13
Table 5: Sub-objectives and prioritisation... 24
Table 6: Risk identification and mitigation 27
Table 7: Planned experiments.........cccoeevevnee 35
Table 8: Loss of first run after 40 EPOCKHS ...ttt eb e es b esebessenenan 45
Table 9: Loss of second run after 40 EPOCKS ...ttt ebe s b e s ebessnesesens 46
Table 10: Performance for different learning rates........ccoeeeeeeeeeeeeseeeceeeeeeeeevenens 46
Table 11: Performance of recommended range test learning rate vs 1e-3 over 40 epochs 47
Table 12: Performance for different batch sizes over 40 epochs 47
Table 13: Performance for different optimisers over 40 epochs 48

Table 14: Performance of Adam vs AdamW over 100 €POCRS........ociiererieieeeriiereeeereeeereeeereeenesenens 48

https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994542
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994542
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994543
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994543
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994544
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994544
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994547
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994547
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994549
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994549
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994550
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994550
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994553
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994553
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994555
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994555
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994559
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994562
https://d.docs.live.net/0445f7308c9cc65b/Documents/University/Third%20Year/Final%20Year%20Project/FYP_Report.docx#_Toc71994569

Table 15: Performance based on number of hidden layers after 40 epochs............ocueveeereeeunnee

Table 16: Performance of different activation functions for hidden layers after 40 epochs

49
50

50

Table 17: Performance of combinations of activation functions after 100 epoches..........cccceeverereueneeee.
Table 18: 5-fold validation loss for benchmarking, simulated and mouse cortex evaluation data

51

Table 19: Evaluation of objectives and sub-0bjJectiVes..........cceeeeeeeeeeeeeeeeeeee e

Table 20: Results of PCA and k-means on the benchmarking data ...
Table 21: Results of PCA and k-means on the simulated data...........c.cccoeeeeeeeeeeeeeeeeeeeee e

Table 22: Results of PCA and k-means on the mouse cortex dataveeieerceeeeeeeeeeeeeseesereeenenes

Table 23: Results of k-means combined with PCA and t-SNE with perplexity 30 on the mouse cortex data

Table 24: Results of k-means and t-SNE for different perplexity values on the mouse cortex data

Table 25: Results of PCA and agglomerative hierarchical clustering on the benchmarking data

Table 26: Results of PCA and agglomerative hierarchical clustering on the simulated data

Table 27: Results of PCA and agglomerative hierarchical clustering on the mouse cortex data

Table 28: Benchmarking data alternative clustering algorithms results for PCA..........ccccoovverievennnene.

Table 29: Benchmarking data alternative clustering algorithms results for ICA......

Table 30: Benchmarking data alternative clustering algorithms results for NMF

Table 31: Benchmarking data alternative clustering algorithms results for PCA and t-SNE

Table 32: Simulated data alternative clustering algorithms results for PCA. ...

Table 33: Simulated data alternative clustering algorithms results for ICA......

Table 34: Simulated data alternative clustering algorithms results for NMF

Table 35: Simulated data alternative clustering algorithms results for PCA and t-SNE

Tﬂlﬁ\lr\ I\" E A lﬂ"':l\nﬁ

Equation 1: Formation of a simplicial complex [42].......oeeeeeeeereeeeeeeeeeesesevesens

80
93
94
94
94
95
95
95
95
96
96
97
97
97
98
98
98

21

Equation 2: Autoencoder identity function [57]

29

29

Equation 3: Adam Weight UPAate [5]......e e eeeeeeeeeeeeeeeeeeeerereeeeeese e sssssessssssssesessssasasses
Equation 4: Mean SQUAred €rror [B2] ... eeeeeeeeeeeeeeeeeeeeeeseseseesssesessssssssssesssssssssessssasseseses

Equation 5: Standardization or Z-score normalisation [65]

Equation 6: Sum of SQUAred Error (SSE) [66] ... eeeeeeeeeeeeeeeeeeeeeeeeeesesevssesssesessssssessssessassssesnen
EQUAtiON 7: RANA INAEX [BF] c..eeeeeeeee ettt s s s s s ss s s s st s sasassesenasases

Equation 8: Adjusted Rand iNeX [70]........ocueveeereeereeeecerereeseeese e sens s esessssssssssssssnsssses

30
31
31
32

Terms, Abbreviations and Notation

This section provides an explanation of biological terms, acronyms, abbreviations, and mathematical notation
that is used throughout the report.

Terms

Term Explanation

10x Chromium

A single-cell RNA sequencing protocol

Adenocarcinoma

A type of cancer that forms in mucus-secreting glands

Cell line A population of cells maintained in a culture that will proliferate indefinitely

DNA A molecule made from two polynucleotide chains that encode the genetic information of living
organisms

Gene A section of DNA that encodes a protein

High-throughput

A sequencing technology able to read the nucleic acid sequence of multiple DNA molecules in

sequencing parallel

Phenotype The observable physical characteristics of an organism

Protein A large biomolecule made up of a chain of amino acids

RNA A single-stranded molecule, structurally similar to DNA, involved in the synthesis of proteins
Single-cell RNA The sequencing of RNA from individual cells of the same type

sequencing

Table 1: Terms

Acronyms and Abbreviations
Abbreviation Definition

Abbreviation ‘ Definition

Adam Adaptive moment estimation PCR Polymerase chain reaction

AE Autoencoder PRelLU Parametric ReLU

ARI Adjusted Rand index RelLU Rectified linear unit

BCV Biological Coefficient of Variation RI Rand index

cDNA Complementary DNA RNA Ribonucleic acid

DEGs Differentially expressed genes Rprop Resilient backpropagation

DNA Deoxyribonucleic acid rRNA Ribosomal RNA

ELU Exponential linear unit SAGE-AR Self-Assessment Governance and Ethics
form for Animal Research

HTS High-throughput sequencing SAGE-HDR Self-Assessment Governance and Ethics
form for Humans and Data Research

ICA Independent Component Analysis scRNA-seq Single-cell RNA sequencing

LR Learning rate SGD Stochastic gradient descent

MAE Mean absolute error SIMLR Single-cell Interpretation via Multi-kernel
LeaRning

ML Machine learning SSE Sum of the squared error

mRNA Messenger RNA Tanh Hyperbolic tangent function

MSE Mean squared error TDA Topological data analysis

NGS Next-generation sequencing tRNA Transfer RNA

NMF Non-Negative Matrix Factorization t-SNE t-Distributed Stochastic Neighbour
Embedding

PC Principal component VAE Variational autoencoder

PCA Principal component analysis

Table 2: Acronyms and Abbreviations

Mathematical Notation

Notation ‘ Explanation

O(n) Big O notation indicating an algorithm with input size n has linear time complexity
0o(n?) Big O notation indicating an algorithm with input size n has quadratic time complexity
a=b a is approximately equal to b
asb ais less than or equal to b
azb a is greater than or equal to b
aeX ais an element of the set X, for example a € {a, b, c}
XcY X'is a subset of Y
fala>0} The set of all values of a such that a is greater than zero
XnyY Intersection of X and Y is the set of all elements in X and all elements in Y
f:X->Y A function from domain X to domain Y
f-1(B) For a function f: X = Y where A c X and B 'Y, f(A) = {f(x) € Y : X € A} is the image of A, while f ~1(B)
= {x € X : f(x) € B} is the preimage
€ Epsilon symbol used in mathematics as a variable
00 Infinity
le-1 Equivalent to 101 =0.1
AT Transpose of matrix A, in which if A is an m x n matrix, then AT is an n x m matrix
|| The absolute value of a, i.e., a non-negative value ignoring its sign
J Sumofaiforalli=1,2,...,j
a;
i=1

Table 3: Mathematical Notation

11

Ctatarmaent nf E+hicrc

Throughout this project, it is my responsibility to ensure that the work follows a legal, ethical, social, and
professional code of conduct in alignment with the British Computing Society [1]. Considerations include:

*

Public interest - This project has been devised to avoid adverse effects to the public, environment, and
reputation of the University. While it does make use of animal biological data, all data is secondary and is
from experiments conducted by other researchers. No animals were harmed or physically present.
Furthermore, the project complies with legislation such as the Computer Misuse Act 1990 [2] as no
computer material has been accessed without permission, nor has other’s data been altered.

Informed consent - There was no participation from human subjects or the collection of personal data and
therefore this is not applicable.

Confidentiality of data - This project does not have a client nor financial data. All datasets used are
available in the public domain and so no data is involved must be kept confidential. It should be noted that
while genetic data is defined as special category data under the Data Protection Act (2018) [3], use of this
data is authorised under the condition of explicit consent [4]. Therefore, the project complies with both the
ACM Code of Ethics and Professional Conduct [3] and the DPA (2018) [3] as there is no sensitive data to
protect.

Honesty and integrity - It is my responsibility to be clear and truthful about the capabilities and limits of
implemented systems. | understand that | must not make false claims, fabricate results, offer nor accept
bribes [5] and that | could be held accountable if these principles are not followed.

Social responsibility - The creation of any new research contributes to the shared knowledge available to
society. The results of this project may provide future researchers with inspiration or understanding of new
approaches. It is intended that anyone who uses the findings use them in socially responsible way.
Professional competence - This project has been conducted in a professional manner under the guidance of
a supervisor. This includes recognising ethical challenges, reflection of technical feasibility, planning and
controlling risks.

Intellectual property - Copyright, patents, and trademarks, have been respected and credit has been given
where applicable for the use of IP of others. All datasets are open-source and freely available to the public
and so the publisher has given consent. If a publisher revoked permission and requested the removal of the
data, | would be ethically obliged to delete copies of the dataset and all test data that is traceable back to
the source. Though, | would not be obliged to delete the overall results as they are not traceable back to the
source data. Additionally, this report is the intellectual property of the creator and anyone passing the
research as their own is committing plagiarism. If others wish to use the findings, they should provide a
citation.

Ethics Review

In compliance with university policy, a SAGE-HDR form was completed at the beginning of the research to
assess wWhether an ethics review from a committee was required. After competition of the form, it was
concluded that an ethics review would not be required. The full SAGE-HDR has been included in Appendix A.

As the research involves biological data from animals, a SAGE-AR form was completed in addition. No ethical
review of the study was required as all testing and training uses secondary data originally collected for other
research. The full SAGE-AR form can be seen in Appendix A.

12

1 Intradiictian

This section details the problem background, project description, aims and objectives, success criteria and report
structure.

1.1 Problem Background

In molecular biology, proteins are produced in cells through two steps: transcription and translation.
Transcription is when sections of DNA are copied to produce a complementary molecule called messenger RNA
(mRNA), while translation is the process in which mRNA is used to produce a protein. This means that cellular
gene expression can be inferred through analysing RNA.

Improvements in high-throughput sequencing technologies (HTS), also known as next-generation sequencing
(NGS), have provided new methods for scientists to study the inner workings of cells at a molecular level [6].
The sequencing of RNA for individual cells of the same type using HTS is known as single-cell RNA-seq.

To sequence RNA, it must first be converted to DNA [6]. Multiple DNA molecules can be sequenced in parallel
using HTS to rapidly produce large volumes of data. This is unlike techniques used in the past, such as Sanger
sequencing, which sequence one molecule at a time [7]. With the ability to create larger and more complex
datasets, scientists must rely on newly developed computational techniques for evaluation.

1.2 Project Description

Within the project, experiments are conducted comparing dimensionality reduction techniques and clustering
methods to interpret single-cell RNA-seq biological datasets with the aim of revealing hidden variation in gene
expression of cells of the same type. In addition, Mapper is used to visualise the high-dimensional data, and this
is evaluated against dimensionality reduction.

This is a type of secondary research as all experiments were conducted on previously collected or generated
data. While similar research projects have been conducted before, | aim to create fresh results on which new
conclusions can be made.

This will be achieved in three main sections: a detailed literature review, substantial implementation of the
numerous experimentations, and an evaluation of methods based upon performance, accuracy, and efficiency.

1.3 Aims and Objectives

The aim of the project is to experiment with clustering and topological data analysis to detect hidden gene
expression in three single-cell RNA-seq datasets. The following are a list of objectives:

1. Research and understand single-cell RNA-seq and the resulting datasets

2. Review literature for data encoding techniques, neural network optimisation methods, clustering
methods and topological data analysis

Implement an autoencoder that can extract a lower dimensional representation of biological data

Test and experiment with different neural network architectures and apply optimisation techniques to
the autoencoder to determine how these change the quality of the encoding

Apply clustering methods to the encoded data

Apply a topological data analysis method to the data

Evaluate the performance of topological data analysis in comparison to clustering methods

Review the results of the project and recommend future improvements

AW

©NoUn

1.4 Success Criteria

To determine if the project has been successful, it will be assessed against the aims and objectives listed above.
The criteria required to meet these objectives is outlined in the Requirements section, while evaluation is
documented in Conclusions and Future Work.

13

1.5 Report Structure
Section ‘ Description
1. Introduction An introduction to the report briefly explaining the project’s topic, a high-level
overview, the objectives, success criteria and the report structure.
2. Literature Review | This partincludes a more detailed explanation of the project topic and research

conducted by others. Data encoding techniques, methods to optimise neural
networks, clustering algorithms and topological data analysis are explored in depth.
Additionally, an overview is given of suitable datasets and a comparison between
machine learning libraries.

Requirements and
Specification

This section explores the project’'s scope in more detail than the Introduction.
Objectives are prioritised and split into sub-objectives to identify steps required for
them to be met. Hardware and software specifications are explained, and the
project’s feasibility is investigated. The project plan is displayed in a Gantt chart
and milestones, dependencies and risks are identified.

System and
Experiment Design

Details the design of the system before implementation. This includes the initial
architecture of the autoencoder, further exploration of clustering encoded data,
how topological data analysis will be implemented and the plan to create of a
simulated dataset. Design choices are justified, and challenges are highlighted. Also
contains a table of experiments to be carried out in Testing and Validation.

Implementation

This part contains documentation of the development process, implemented code
and challenges. This includes importing the datasets, creating the autoencoder,
clustering, topological data analysis and the creation of the simulated dataset.

Testing and
Validation

In this section, the technical details of the datasets are explained, and the results of
conducted experiments are documented in the form of tables and graphs. This
includes autoencoder optimisation, training the optimised models, applying
clustering techniques and topological data analysis with Mapper. Additional results
from this section are available in Appendix B.

Conclusions and
Future Work

The final part of the project consists of a general overview, evaluation against
objectives, explanation of the results and implications, suggestions for future
research and the final statement.

Table 4: Report structure

14

2. Literature Review

This part of the report explores single-cell RNA sequencing, data encoding techniques, optimisation of neural
network architectures, clustering techniques and topological data analysis in depth. This is essential to meet
objectives 1 and 2.

2.1 Single-Cell RNA Sequencing

RNA sequencing experiments provide an abundance of big data suitable for evaluation using computational
methods. These datasets are large and complex, so it is important that a researcher understands the data before
they can evaluate it. Therefore, this section explores the technical details of single-cell RNA sequencing, benefits
over other techniques and challenges.

2.1.1 Purpose

Single-cell RNA-seq enables researchers to measure gene expression across a population of heterogeneous cells
[8]. This includes identifying which genes are active, when genes are active, and their level of expression.

Since the first study in 2009, this technique has helped scientists make many discoveries and breakthroughs in
medicine. For example, analysing genomic differences between individual cells in a tumour mass has previously
revealed malignant tumour cells [9]. Similarly, researchers have been able to examine unique individual cells,

such as cells within early stages of a developing embryo.

Figure 1 shows the typical steps of RNA sequencing. First viable, ig,‘mm. ANA
individual cells are isolated from a tissue sample. For each cell, the

membrane is broken down in a process called lysis as this improves the orois_ -

2.1.2 How It Works

capture of RNA molecules [9]. Then the process of reverse e

transcription is used to create tagged complementary DNA (cDNA) smallncRNA [’\-’ M

synthesized from messenger RNA (MRNA). This cDNA is known as a o T

cDNA library [10]. leokéde speciil Flié species

Small volumes of cDNA are amplified through a technique such as v v v

polymerase chain reaction (PCR) which facilitates rapid creation of P — —— p——

millions of copies. Each cell’'s cDNA library is then pooled and A o g
~—— MA s MAAAA e

sequenced by next-generation sequencing (NGS) to produce a dataset — AMAAA

[91. ,
l Convert to cDNA

cDNA

2.1.3 Benefit Over Alternative Techniques

The standard method of RNA-sequencing, bulk RNA-seq, can only l Construct sequencing ibrary
determine average gene expression levels over a large population of

cells. In comparison, scRNA-seq provides a more accurate = == e
representation at a cell-to-cell level (see Figure 2). i

Reveals heterogeneity and
subpopulation expression
variability of thousands of cells

Each cell type has distinct PCR amplification and sequencing

Single Cell Input expression profile

Single Cell
Analysis . .

Figure 1: RNA sequencing steps [97]

Tissue

Bulk \t\ - I u
Analysis v
L

Bulk RNA Input

Average gene expression
from all cells

Figure 2: Single-cell vs bulk RNA sequencing [11]

Cellular heterogeneity
masked

15

2.1.4 Challenges

During RNA-sequencing, scientists often read gene expression for thousands if not millions of cells across
thousands of different genes. This produces large volumes of data requiring high storage capacity and
computationally expensive analysis [12].

Noise and unexpected variation can be introduced due to a variety of reasons including the local environment of
cells, variety in the rate of RNA processing or changes in the cell cycle. Similarly, for many genes, no expression
is detected within a cell producing a zero in the data. Either the gene is not present, or it has been missed
producing a false negative. This is common in methods such as droplet-based scRNA-seq which frequently
produces sparse datasets [5]. However, redundant values and noise can be reduced through data encoding. This
can also greatly decrease dataset size and improve performance during computational evaluation.

2.2 Data Encoding Techniques

Analysing a scRNA-seq dataset typically involves normalisation, feature extraction and dimension reduction.
Normalisation is the adjustment of data to account for differences in experimental conditions [13]. However,
this step cannot be included as the project will only use secondary or generated data. Feature extraction
attempts to discover single or combinations of genes which best represent a cell sample. As a result, genes that
do not exhibit any biologically significant variation are disregarded [13]. Dimension reduction aims to learn a
lower representation of the data which reflects the gene expression of each cell sample. This means that data
can be compressed without loss of significant characteristics.

Two popular methods used to perform feature extraction and dimension reduction include principal component
analysis and autoencoders. Therefore, their suitability will be evaluated in this section.

2.2.1 Principal Component Analysis (PCA)

Principal component analysis is one of the most widely used “. ' el f: * - N
techniques to reduce the dimensionality of datasets [14]. It . . :‘ I"'x . . *:;/!:j:,, ‘
operates by transforming data into principal components 3y . . LI . .
and selecting the top k that represent a high percentage of 5 " ”*{ . f-«-*""‘**\. . :
variation within the data. All other components are - _f,-af”':' PO ‘x,: .

removed as they do not significantly benefit the model [15]. R R R .

A lower dimensional hyperplane is constructed that best
maximises the amount of variance within the data. Figure 3
shows an example in which PCA selects two dimensions, Figure 3: Example of PCA example showing two principal
PC1 and PC2, that provide the highest variance and second components [16]

highest variance respectively.

“ariable 1

2211 Previous Work

Many previous studies have applied PCA to the analysis of scRNA-seq data. For example, research by Sato et al.
[15] compared the performance of 10 PCA algorithms with four clustering methods on large datasets. Each
dataset contained millions of samples consisting of human cells from the blood or pancreas, or mouse cells from
the brain or spinal cord. The results show that some implementations of PCA can be fast, accurate and memory
efficient. Furthermore, this study is useful as it provides guidelines for selecting an appropriate PCA algorithm.

2.2.2 Autoencoders
2221 Deterministic Autoencoder

Autoencoders are an unsupervised learning technique created using a neural network [16]. A deterministic
autoencoder will take an input vector and attempt to reconstruct it so that the output vector is as similar as
possible [17]. Often, it is trained over multiple iterations to minimise mean squared error using gradient descent
[15]. An autoencoder’s goal is to find a function that maps features to itself. This is achieved using an encoder
and decoder as shown in Figure 4. First the encoder learns to represent data in a lower-dimensional space by
extracting important features. Then the decoder learns to reconstruct the original data using the encoded
feature representation [18].

16

2222 Variational Autoencoder

A variational autoencoder (VAE), such as that shown in Figure 4, is a type of autoencoder that returns a
probability distribution rather than a single value for each attribute. Unlike a standard autoencoder, the VAE
encoder outputs a vector of means p(x) and vector of variance o(x)2. These are used to create a Gaussian
distribution that allow a range of encodings to be generated as opposed to fixed values [19].

Latent

Latent Encoder Random Sample Decoder
Encoder Space Decoder P Space

NS
ek
XA > X
':‘I@fg‘\.‘ A 2N

SN
A

Diagonal |——
Multivariate
Gaussian

t toot t t t

Input Data Encoded Data Reconstructed Data Input Data Mean, Variance Encoded Data Reconstructed Data

Figure 4: Standard deterministic autoencoder architecture (left) and variational autoencoder architecture (right) [19]

2111 Previous Work

In a study conducted by Kim et al. [15], a VAE was trained by unsupervised learning on 20 scRNA-seq datasets
from The Cancer Genome Atlas [20]. The learnt weights were then transferred to a survival prediction model
they named VAECox. Transferring and fine-tuning weights was shown to be more effective than when
VAECox’s weights had been randomly initialised. This indicates that using the autoencoder improved the
model’s ability to identify gene expression useful for predicting patient survival for a range of cancers.

2.1.2 PCA vs Autoencoders

¢ PCA s alinear transformation, while autoencoders can learn non-linear functions to represent data through
using neural networks. This allows autoencoders to learn a more complex representation of the data.

¢ Autoencoders combine features into a compressed layer of size k, while PCA select the top k features. This
means that autoencoders are better at retaining the structure of the original data [15].

+ If asmall kis selected, autoencoders tend to produce a lower reconstruction error than PCA at the same k
value. Therefore, smaller datasets can be used by an autoencoders to produce the same error. This is
advantageous when dealing with big data. However, when k is increased, error converges [15].

¢ As an autoencoder learns to extract features from training data, they are often only capable of
reconstructing data of a similar class as the training set [14]. In comparison, PCA produces a more
generalised model that can be used for datasets with greater variation. However, the robustness of PCA is
not required for this project as testing will be limited to data with a similar structure.

2.1.3 Conclusion

PCA and autoencoders are both suitable methods for encoding scRNA-seq data. However, for the reasons
above, | decided to focus upon deterministic autoencoders as the main method of dimensionality reduction.
Consequently, the technical details of autoencoders are explored further in the System Design section.

2.2 Neural Network Optimisation

Neural networks can be optimised through tuning parameters and hyperparameters. A model’'s parameters are
those that are learnt during training, such as weights and biases, while hyperparameters are those set
beforehand, such as number of hidden layers and nodes, learning rate, and activation function [21].

17

According to a guide by G. Liu [22], learning rate is the most important hyperparameter, followed by batch size,
optimiser, and number of epochs. Therefore, this section explores how these hyperparameters can be set to

improve performance.

2.2.1 Optimisers and Learning Rate

Common optimisers include resilient backpropagation (Rprop), stochastic gradient descent (SGD) and Adam.

These algorithms update model weights to minimise a loss function. Changing the optimiser can affect a model’s
accuracy, speed of convergence to an optimum, and run time. For example, Figure 5 demonstrates the influence

of various optimisers on validation accuracy.

1

0.9

0.8

0.7

0.6

05

Validation accuracy

Figure 5: Example showing validation accuracy over time for different optimisers [23]

800 1000

Time in seconds

1200

1400 1600 1800 2000

——Adam

Adagrad

Momentum

GD
——Adadelta

RMSProp

The magnitude an optimiser’s weights are updated is determined by learning rate [24]. If learning rate is too
low, the optimiser will make small changes to the weights and training will be slow. Similarly, if it is too high,
training may be unstable. Therefore, optimising learning rate is a key step to improving speed and performance

as exhibited in Figure 7.

Too low

18) |

1(9)

Just right

Too high

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning
rate swiftly reaches the
minimum point

Figure 7: Learning rate comparison [24]

2211

LR Range Test

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

loss

Just right

134

121

114

104

0.9 1

0.8 4

1077 10 107 107% 107 1072 1070 10°
learning rate

Figure 6: Example of learning rate
optimisation using LR Range Test [26]

The LR Range Test [25] is a trial-and-error technique for learning rate optimisation. Learning rate is initialised at

a low value and the model is run for several iterations with learning rate increasing linearly or exponentially [26].

Loss at each learning rate is plotted (see Figure 6) and a new learning rate is selected from the region where loss

converges fastest.

2.2.2 Batch Size

Batch size is the number of training samples used to estimate error gradient before a model’s weights are

updated. Batch gradient descent is when batch size equals the number of training samples. Stochastic gradient
descent is when batch size is set to one. If batch size is anywhere between one and the total training set, this is
mini-batch gradient descent [27].

18

2221 Selecting Batch Size

Batch gradient descent is most suited to small datasets with less than 2000 training samples [28], and becomes
inefficient when using lots of training samples. In this case, a smaller batch size between one and several
hundred is recommended as this can improve training stability and performance. It is also advised to shuffle
samples as changing the order of the batches per epoch regularly leads to faster convergence [29]. To find a
suitable batch size, the model can be run over a set number of epochs, such as 30, with multiple batch sizes. The
batch size with the lowest loss is then selected [22].

2.2.3 Epochs

In machine learning, epochs are the number of complete passes through the training data. A single epoch
consists of one or more batches, depending on the type of gradient descent. Once an epoch is complete, this
indicates each training sample within every batch contributed towards updating the model’s parameters [30].

2231 Overfitting and Underfitting

Overfitting is when a network learns to model training data too well. This can be a problem as the model picks
up on noise meaning it does not generalise well when applied to test data. A network may start to overfit if
trained over too many epochs. In comparison, underfitting is when a network does not model the training data,
nor generalise on test data. This often occurs if the network has not been trained for long enough or if the
training data does not contain enough samples. Both underfitting and overfitting should be avoided as they lead
to poor performance on testing data [31]. A visual example can be seen in Figure 9.

Under-fitting Appropriate-fitting Over-fitting
[}
A o,j
A @ 0 A A
S ANO © - o
e TAN A A0 p g
3 A 4 2 o
ke 3 2
A A @ 2
A A AA
I feature 2 © - feature 2@ - I feature 2@

Figure 9: Comparison between underfitting and overfitting

. A Training Set Accuracy
2.2.3.2 Early Stopping g
The ideal number of epochs can be determined as the point before testing < Overditling
or validation accuracy decreases, and the model starts to overfit. This is
called early stopping and can be visualised by the line in Figure 8. Generally, Test Set Accuracy

. Early Stopping
this is achieved through counting a set number of times in which no Epoch
improvement is observed [32]. However, in practise, early stopping may -
lead to sub-optimal performance due to fluctuations in accuracy. Epoch

Figure 8: Trade-off between training and

. testing accuracy [32]
2.2.4 Conclusion g Y

To conclude, this part considers the most important hyperparameters to tune to reduce loss and subsequently
improve a network’s accuracy. Optimisation of hyperparameters is investigated further in the System and
Experiment Design section.

2.3 Clustering Techniques

Clustering is an unsupervised learning method in which data points are divided into groups with similar traits
[33]. When analysing scRNA-seq gene expression data, the goal is to group similar genes by adding them to the

same cluster [34]. Two effective and widely used algorithms are k-means and hierarchical clustering, and so they
are investigated in this section.

19

2.3.1 K-Means Clustering

K-means is a type of partitional clustering as data points are ~ ° h

divided into non-overlapping groups as demonstrated in ° .: o

Figure 10. It uses an iterative, centroid based algorithm. e W

Before starting, the number of clusters, k, must be specified. e m

At initialisation, every data point is randomly assigned a . ®e .

cluster and centroids are computed. For each iteration, data o’ o, °

points are reassigned a cluster based upon its closest centroid. °, : ¢ .: ° Q
The centroids are re-computed, and the process repeated °e > !

until no improvement is observed for two consecutive

repeats or after the maximum number of iterations [33]. Figure 10: K-means clustering example [102]

23.1.1 Previous Work

Ensemble clustering is a technique in which multiple clustering models are combined to improve performance. A
study by Geddes et al. [35] conducted experiments applying ensemble learning to k-means clustering, and
separately with SIMLR, a clustering method designed for RNA sequencing data. Before clustering, random
subspace projections were taken from eight sc-RNA-seq datasets and compressed using an autoencoder.
Ensemble learning was then applied over all encoded data to create cell clusters. The results suggest that
applying ensemble clustering improved the accuracy of k-means by 30% and SIMLR between 50% and 100%.
Although ensemble clustering is outside of the scope of this project, this study highlights that k-means is a
valuable technique for the analysis of scRNA-seq data.

2.3.2 Hierarchical Clustering nss)
05
Hierarchical clustering is a connectivity-based algorithm implemented using o5}
either a bottom-up or less frequently a top-down approach. Agglomerative oap
clustering is a bottom-up approach that starts by assigning each data point to n3r
its own cluster. The nearest two clusters are then merged to form the same nar

cluster. This is repeated and the algorithm terminates when there is one cluster
remaining. By comparison, divisive clustering is a top-down approach that
starts with one cluster which is repeatedly split into the least related clusters
until only single data points remain [36].

92317 611 315 71419162422 11312 521 41020 218 6825

Figure 11: Example of agglomerative

The results are displayed in a dendrogram (Figure 11). The height at which two hierarchical clustering dendrogram [33]

clusters merge represent the distance between them in the data space [33]. The optimal number of clusters is
that which best distinguishes each group. By examining the dendrogram, this can be determined by finding the
largest difference in distance on the y-axis in which the number of clusters does not change [33]. For example,
in Figure 11, the best number of clusters is four as the largest distance is 0.55 - 0.4 = 0.15.

23.21 Previous Work

When gene expression is inconsistent across samples of the same cell type from separate populations, these are
known as differentially expressed genes (DEGs). It is assumed that DEGs are the main cause of multiple
phenotypes [37]. A paper by Koch et al. [38] applied hierarchical clustering and k-means clustering to DEGs from
three populations of macrophage cells. Although some clusters assigned by the two techniques were not
identical, they appear to show a similar pattern.

2.3.3 K-Means vs Hierarchical Clustering

¢ The time complexity of k-means is linear O(n), while hierarchical is quadratic O(n?) meaning k-means is
better suited to handling big data [33].

¢ K-means is non-deterministic because the algorithm starts by randomly assigning clusters. As a result,
different outcomes can be produced on separate runs using the same input. By contrast, hierarchical
clustering is deterministic and so the results will always be the same for a given input.

¢ K-means works best when clusters have a spherical shape but does not perform well for clusters with
complex shapes and different sizes. Hierarchical clustering can be sensitive to outliers [36].

20

2.3.4 Conclusion

Both k-means and hierarchical clustering are appropriate for clustering scRNA-seq data. Therefore, | decided the
two algorithms will be implemented, and their performance compared. Further research on these techniques is
conducted in the System Design section.

2.4 Topological Data Analysis

In mathematics, topology is the study of non-numeric geometric properties such as smoothness and
connectedness. Topological data analysis (TDA) is the application of topology to understand the geometric
nature of datasets [39].

2.4.1 Purpose

TDA is a technique for the investigation of high-dimensional data, such as scRNA-seq datasets. The problem
with these datasets is that points cannot be properly plotted as they have too many coordinates to be visualised.
However, TDA can resolve this by creating a structure to visually represent the full shape of the data [40].
Additionally, TDA is resistant to noise and missing data by retaining only significant features [41].

A more popular method for visualising scRNA-seq data is t-Distributed Stochastic Neighbour Embedding (t-
SNE). It works particularly well at identifying cell type clusters. However, sometimes a population of cells may
convey a spectrum of gene expression meaning that they cannot easily be separated into groups. In this
situation, t-SNE would not be suitable [35].

2.4.2 Topological Signatures

A topological signature is a simplified representation of topology in

a space that summarises a dataset. A common representation of a .

signature is a simplicial complex. This is a set of n-dimensional
simplices, in which O-simplex is a vertex, 1-simplex is a line, 2-

simplex is a triangle, and 3-simplex is a tetrahedron [42]. The first Figure 12: Low-dimensional simplices [105]
four simplices are presented in Figure 12.

0-simplex 1-simplex 2-simplex 3-simplex

2.4.3 The Vietoris-Rips Complex

The Vietoris-Rips complex, often known as Rips complex, is an example of a topological signature. A simplicial
complex VR ¢ (X) is constructed using data points as a vertex set X and parameter € = 0. For each pair of points in
the vertex set with distance less than €, a 1-simplex edge is formed between them [42]. The higher the value of
€, the more simplices that can be formed. This can be visualised using balls with radius €/2, although note e-balls
are not actually part of the complex [37]. For example, Figure 13 demonstrates how more simplices are formed
when € is increased as more of the ball intersect.

However, increasing this threshold too much can also result in the loss of topological features. This is because if
the balls overlap too much, the higher dimensional shape will become too complicated and distinctive features
will no longer be visible. For example, increasing € further in the last simplicial complex in Figure 13 would cause
the ring shape to disappear.

Figure 13: Example in which a simplicial complex is generated by increasing € [43]

When forming a higher dimensional simplex across multiple verticies, it can only be included if all lower
dimensional simplicies are also included between them [40]. For example, in the third image in Figure 13, a 2-
simplex triangle is formed between three vertices only if each is also connected by an edge. The formation of a
Rips complex from non-empty intersections can be generalised by Equation 1.

21

B(X1, €) n B(X2, €) n... n B(Xn, €)
Where B(X;, €) = {x € X | d(X;, x) < €}
Equation 1: Formation of a simplicial complex [42]
Where:

¢ Xiis the ith vertex
¢ B(Xq, €) n...nB(X,, €) is the intersection of e-balls for verticies 1, ..., n
¢ d(X;, x) is the distance between vertex Xi and another vertex x

2.4.4 Persistent Homology

The idea of persistent homology is that for a space represented as a simplicial complex, features retained over a
large parameter range are statistically significant [42]. For example, with a Rips comple, it is advisable to
investigate a range of possible values for €. This is because persistent features are more likely to represent the
true features of the dataspace rather than those caused by noise [44].

2.5 Datasets

Multiple datasets are to be used to thoroughly test and evaluate the performance of the dimensionality
reduction, clustering methods and topological data analysis. Initially | will experiment with a benchmark dataset,
then after completing implementation | plan on evaluating it against both simulated and real data. Therefore, this
component investigates the three selected scRNA-seq datasets.

2.5.1 Human Lung Adenocarcinoma Benchmark Dataset

For testing during development, the tabular dataset sc_10x, has been selected. This is a small set of genetic data
composed from a mixture of three cell lines. All data has passed quality control checks and contains no gene
filtering [45]. It is part of a larger dataset sc_mixology created by Luyi Tian that additionally contains results from
clustering experiments. This is useful to provide a comparison to evaluate the performance of clustering
algorithms implemented in this project.

The dataset was created to test scPipe, a pre-processing pipeline for scRNA-seq data proposed by Tian et al.
[46]. The aim of the research was to create a new R package compatible with data generated from a variety of
scRNA-seq protocols. To generate sc_10x, human lung adenocarcinoma cells were cultivated from cell lines:
HCC827, H1975 and H2228. These cells were processed by 10x Genomics' Chromium technology and
sequenced using lllumina Nextseq 500. A gene expression matrix was then produced through scPipe.

2.5.2 Splat Simulated Evaluation Dataset

The benefit of simulated data is that it can be quickly generated at low cost. This is useful to provide more
testing samples and can also provide a ground truth to compare against when evaluating a model’s performance
and limitations [47]. Splatter [48] is an R package proposed by Zappia et al. [47] that provides six different
models to create simulated sc-RNA-seq data. Although other simulations tools exist, the motivation behind
Splatter is to create data that is provably accurate and reproducible.

In this paper, each model is evaluated, including their own proposed model Splat. The results suggest that
performance highly depends on the data’s source. For example, Splat and BASICS were both able to create the
closest matches to real data for induced pluripotent stem cells. However, Splat achieved the worst performance
when simulating cerebral organoid cells [47]. Therefore, it is a good idea to experiment with several simulators.

2.5.3 Mouse Cortex Evaluation Dataset

In an article published in Science by Zeisel et al. [49], an mRNA dataset [50] was created by large-scale scRNA-
seq experiments from mouse cortex and hippocampus cells. They attempted hierarchical clustering, though
found that this alone resulted in fragmented clusters as many of the genes were not related to every sample. To
solve this, they created a new biclustering algorithm BackSPIN. This algorithm was then used to cluster the cells
into nine classes and was applied again to these classes revealing 47 molecularly distinct subclasses. Together,

https://github.com/LuyiTian/sc_mixology/blob/master/data/csv/sc_10x.count.csv.gz
https://github.com/LuyiTian/sc_mixology
https://github.com/Oshlack/splatter
http://linnarssonlab.org/cortex/

22

these comprise all known major cell types in the cortex [49].

2.6 Machine Learning Libraries

PyTorch and TensorFlow are two popular machine learning libraries considered for implementing the
autoencoder.

2.6.1 PyTorch

PyTorch is a free, open-source library for Python or C++ programming [51]. It consists of many modules suitable
for creating neural networks [52]. Deep learning is reliant on tensors, which are multi-dimensional matrices.
PyTorch is built upon the Torch library, so provides a large library of operations on tensors. A benefit of PyTorch
tensors compare to tensors used by other frameworks, such as NumPy arrays, is that they can be operated on
by CPU or GPU [52]. Using GPU can improve performance which is particularly useful when training networks
on large datasets. The layer-by-layer construction of networks in PyTorch makes them highly customisable. This
is an important property for experimentation with the autoencoder’s architecture. This includes testing different
activation functions and loss functions to optimise the network.

2.6.2 TensorFlow with Keras

TensorFlow is an open source, deep learning library while Keras is a high-level API that sits on top. Keras has a
simple architecture while TensorFlow is more complex and often difficult to use [53]. Therefore, the Keras API
has been integrated into TensorFlow, making the TensorFlow library more user friendly [54]. Like PyTorch, a
network is constructed by joining layers, with each layer configured according to the number of nodes and
activation function.

2.6.3 PyTorch vs TensorFlow

¢ TensorFlow is older and so currently has a wider range of documentation and tutorials.

¢ PyTorch code is simpler making it suitable for newer developers, while TensorFlow is only recommended to
intermediate-level developers.

¢ PyTorch has strong support for GPU acceleration, while TensorFlow only supports NVIDIA GPUs [55].

¢ TensorBoard is a logger provided by TensorFlow useful for visualising graphs. However, integration is
provided for PyTorch [56].

¢ |tis easier to deploy machine learning models on TensorFlow. Though, this is out of scope of this project.

2.6.4 Conclusion

PyTorch and TensorFlow provide similar features and either could be used to implement the autoencoder.
However, | have selected PyTorch because code is cleaner, and has better support for GPUs.

23

3. Requirements and Specification

This section identifies the project requirements, hardware and software specifications, analysis of project
feasibility and details the project plan.

3.1

Requirements

This part specifics the requirements necessary to evaluate the success of the project during Conclusions and
Future Work.

3.1.1 Sub-Objectives and Prioritisation

For every objective outlined in the Introduction, sub-objective(s) are identified detailing the specific steps
required to achieve it. Each is given a priority between 1 - 5, in which 5 is the highest priority and 1 means it is

optional.
ID | Objective Sub-objective Priority
(0-5)
1.1 | Research and Review multiple sources, including papers and articles on single-cell RNA-seq 4
understand single-
1.2 | cell RNA-seq and Write a summary of the technical details of RNA-seq and challenges with the type | 3
the resulting of data in the Literature Review
datasets
1.3 Select datasets for benchmarking and evaluation 5
2.1 | Review literature Research and compare at least two data encoding methods in the Literature 4
for data encoding Review
techniques, neural
2.2 | pnetwork Research neural network optimisation techniques and write a summary in 4
optimisation Literature Review
methods, clustering - - - -
2.3 methods and Research and compare at least two clustering methods in the Literature Review 4
2.4 topcl)lo.glcal data Research topological data analysis and write a summary in the Literature Review 2
analysis
3.1 | Implement an Split dataset into testing and training data 5
autoencoder that
3.2 | can extract a lower | Implement an encoder that can produce a compressed version of input data with 5
dimensional less features
representation of
3.3 opres Implement a decoder that can reconstruct the compressed data so that it has the 4
biological data .
same number of features as the input data
4.1 | Testand Experiment with different learning rates and update the autoencoder to use the 4
experiment with optimum
different neural
4.2 | network Experiment with different batch sizes and update the autoencoder to use the 4
architecturesand | Optimum
apply optimisation - - - —
4.3 techniques to the Experiment with different optimisers and select the best for the autoencoder 3
4.4 | autoencoder to Experiment with different numbers of hidden layers and features to optimise the | 3
determine how structure of the autoencoder
these change the
4.5 | quality of the Improve decoded output so it produces 50% or less error 1
encoding
4.6 Train the optimised autoencoder 5
4.7 Convert autoencoder to VAE autoencoder 1
5.1 | Apply clustering Run the trained autoencoder on test data to retrieve the encoding 5
methods to the
5.2 | encoded data Perform k-means clustering on encoded data 5
5.3 Perform agglomerative hierarchical clustering on encoded data 5
54 Perform clustering on secondary datasets 2

24

6.1 | Apply a topological | Create a simplicial complex from the first dataset 3
data analysis

6.2 | method to the data | Plot the simplicial complex 3

6.3 Perform TDA on secondary datasets 2

7.1 | Evaluate the Document clustering results in report 5
performance of .

7.2 | topological data Document TDA results in report 3

73 | 2nalysisin C the results from the two methods and explain findi 2

3 | comparison to ompare the results from the two methods and explain findings

clustering methods

8.1 | Review the results Evaluate project against aims and objectives 5
of the project and . . S—

8.2 | recommend future | Suggest how the project could have been improved with hindsight and how it 5
improvements could be continued in the future

Table 5: Sub-objectives and prioritisation

3.2 Hardware and Software Specification
3.2.1 Hardware Specification

No specific hardware is required as code can be executed through a browser on Google Colab. It is
recommended to use a GPU if training a new autoencoder. In Colab, this can be done by pressing “Runtime” =
“Change runtime type” — select GPU from “Hardware accelerator”.

3.2.2 Software Specification

Code is written in Python 3.6.9 and R 4.0.3 across two Jupyter notebooks. During development, they were
executed through Colab via the Google Chrome browser. The main libraries are listed below:

Python libraries: R libraries:

Torch ¢ Bioconductor
PyTorch Lightning ¢ Splatter

Pandas
Numpy
Scikit-learn
Plotly
KeplerMapper

® & 6 6 O oo

3.3 Feasibility Analysis
Before development, it is crucial that the project is determined to be achievable and within the required scope.
In particular, the project will be assessed against technical, legal, economic, and scheduling feasibility.

3.3.1 Technical Feasibility

Regular discussions with my supervisor allowed me to develop a project that is both challenging and yet within
the scope of my technical capabilities as a computer science student. Before starting, | had several years’
programming experience with Python and have used Pytorch in a third-year module. However, this project is far
more difficult technically than | have experienced before and will allow me to explore the framework in more
depth. Performing a comprehensive literature and technology review prior to implementation was vital so that |
could explore relevant topics to gain the understanding required during development.

Additionally, programming in Google Colab notebooks enables code to be executed through a browser with no
set up, no hardware constraints and access to GPUs. This means | will not be reliant on any specific device and
only require an Internet connection.

25

3.3.2 Legal Feasibility

The project has been developed in line with relevant legislation as specified earlier in the Statement of Ethics.
Furthermore, this project is intended for research purposes only.

3.3.3 Economic Feasibility

This project is for research purposes only and has no development costs. In addition, there are no ongoing costs
such as maintenance fees. Therefore, it is economically viable.

3.3.4 Scheduling Feasibility

During the early stages of the project, a workplan was developed. Since creation, it has been updated
accordingly with the release of new deadlines. Following this plan should enable key objectives to be completed
before the deadline. This is explored in further detail in the Planning section below.

3.4 Planning
This section details the planning to ensure all necessary milestones are met so that the project’s aim is fulfilled.
This consists of a workplan and risk identification.

3.4.1 Workplan

The project timetable is illustrated below in Figure 14 as a Gantt chart. Deliverables are categorised into stages
“Concept and Research”, “Implementation”, “Testing”, “Evaluation and Closure” and are colour coded
accordingly. Each deliverable has an estimated start date, end date and ideal estimated length of completion
represented by the size and position of the bar. In addition, an orange error bar indicates the acceptable margin
of freedom. If the deliverable is not completed within this time, this may be detrimental to the overall
completion of the project.

Key milestones are of high priority and are represented by grey diamonds along with their dates. These include
submission deadlines and target completion dates for stages. Deliverables marked with an asterisk have a low
priority and could potentially be dropped as further explained in the risk section.

Dependencies are represented by dashed arrows between deliverables. A deliverable with many arrows is of
high priority as this means there are other tasks reliant on prior progress before they can begin. For example,
report write-up must start well in advance of draft report submission so that the report can be reviewed by the
supervisor before the final report submission deadline.

26

Concept and Research Implementation Testing Evaluation and Closure
01-Sep 26-Sep 21-Oct 15-Nov 10-Dec 04-Jan 29-Jan 23-Feb 20-Mar 14-Apr 09-May 03-Jun 28-Jun 23-Jul 17-Aug

Project selection -

v
- Assess feasibility ----
 me |
v
i Research scRNA-seq

i ——

¥ write project overview ----
v
‘ Submit project overview (09/11)

Interim discussion -------'

Research network implementation

—

’ Concept and research (10/01)

s » Implement autoencoder -----------

Optimise autoencoder structure

—__

I » Apply clustering

| ———

3_.. * Topological data analysis

‘ ‘ Implementation (20/03)

Testing initial dataset ----------------ommmnmnooeoeo)

| —— A |

v
* Testing second dataset

’ Testing (12/04)

L # Evaluation of results

—

v
‘ Draft report submission (15/03)

S e S E » Create video presentation ----
| v
e s IxbE I T ETEES EELEEREEEE EEPER e Ll » Prepare report for submission --------

v
‘ Report submission (18/05)

Figure 14: Project timetable

3.4.2 Risk Assessment

While developing the workplan, it was difficult to give an accurate estimate for the expected duration of each
task as there are many factors that could influence completion. Known factors are listed in the table below. Each
has a description, estimated likelihood, estimated impact, severity based upon likelihood and impact, and
solution(s) to mitigate the risk.

Affected Likelihood Impact | Severity | Mitigating Action(s)
Milestone(s)

Medium

Project is not Concept and
feasible Research

Assess feasibility with sponsor at
start. Change project complexity to
make project feasible.

Falling behindon | Any
timeline due to
unknown other
course deadlines

High Assigning additional time each week
to work on project. Re-evaluate plan
once semester 2 dates are known.
In worst case, low priority

27

and
commitments

deliverables will not be
implemented.

3 Errorin Any Medium Medium | Medium | Overlapping bars and acceptable
estimated task error in Gantt chart provide leeway
completion time for overrunning tasks. In worst case,

low priority deliverables will not be
implemented.

4 IlIness Any Medium | Low Speak to supervisor if work is
affected. In worst case, low priority
deliverables will not be
implemented.

5 Lack of clarity on | Any Medium | Regular meetings with supervisor to
the next stage discuss progress. Re-estimate
project remaining tasks if necessary.

6 Supervisor Any Low Arrange regular meetings with
unavailability supervisor in advance. Work on

another part of the project if unsure
about a task.

7 Underestimating | Implementation | Medium High Low priority deliverables will not be
difficulty of and Testing implemented. Assign additional time
implementation to work on project.

8 Unfamiliarity Implementation | Medium Medium | Medium | Read documentation and tutorials.
with
programming
framework

9 Large dataset Implementation | Medium Medium | Medium | Reduce dataset size during testing
taking a long time | and Testing and / or training of models.
to run

10 Data loss Any Medium | Regularly save work and store
backups.

11 Internet Any Low Work on another part of the

connection project, such as report write up,
problems until connection is restored.

Table 6: Risk identification and mitigation

4. System and Experiment Design

System and Experiment Design outlines the plan for the initial system to be implemented, design challenges and
a table of planned experiments. This is essential to meet objectives 3 - 6.

41 System Design
This part describes the design for the autoencoder, clustering algorithms, topological data analysis and creation
of simulated data.

4.1.1 Autoencoder

Input cell
data

Split data into
testing and training

Initialize network
weights and
hyperparameters

Is training
Train autoencoder loss Stop training

increasing?

Save model

Test autoencoder

Output
encoded
test data

Figure 15: Flowchart for training and testing autoencoder

Figure 15 gives an overview of how the autoencoder will learn to produce an encoded output. First the inputted
dataset will be divided into testing and training data. Then the autoencoder’s parameters will be set and it will be
trained on the training data. Once training is complete, the autoencoder’s state will be saved, i.e., the model’s

weights. This model will then be evaluated against the testing data and the encoding for each sample outputted.

4.1.1.1 Network Architecture

The design for the autoencoder’s initial structure is shown below in Figure 16. The encoder will have N inputs,
where N is the number of features for each sample. In a dataset, this is the number of genes per cell so the value
has not been specified as it can vary.

29

Input Layer Hidden Layers Output Layer
r_l_\ A I\

Encoded
Output

\ J o\ J

Encoder Decoder
Figure 16: Autoencoder architecture diagram

The decoder will have N outputs as the goal is to find an xk’ for each xk (k = 1, 2, ..., N) such that xx = x«'. In other
words, each input feature xx will be reconstructed with minimum error. To achieve this, the autoencoder
attempts to learn an identity function as shown in Equation 2.

hw,w’ (X) =X
Equation 2: Autoencoder identity function [57]
Where:

¢ w is the weights of the encoder
¢ W' is the weights of the decoder
¢ xis the vector of all inputs

A study by Geddes et al. [35] proposed that their autoencoder achieved the highest accuracy using 128 hidden
features, 16 encoded features and a learning rate of 0.001. Therefore, these hyperparameters have been
selected as baselines to initialise the model. Additionally, all layers will be fully connected. The ReLU activation
function shall be applied to hidden layers, while linear will be used for the input, output, and encoded layer. The
network will be trained through gradient descent.

4.1.1.2 Optimiser

The Adam optimiser is an extension of stochastic gradient descent. It has been selected as it is computationally
efficient, requires little memory and is good with noisy datasets [58]. Unlike SGD, Adam uses momentum and
adaptive learning rate. This can be seen in Adam’s weight update rule as shown by Equation 3.

o~

m

We = Wi — N —=
U, +e€

Equation 3: Adam weight update [59]
Where:

w: and wt-1 are the model weights of time instances t and t-1 respectively
n is the learning rate

M, is the bias-corrected first moment estimate
U, is the bias-corrected second raw moment estimate
€ is a small term preventing division by zero

* & & o o

30

Adam is a descendent of Adadelta, which was created as an extension of Adagrad optimiser. A more recent
variant is AdamW, which aims to fix weight decay in Adam [60]. These variants will be tested along with two
other popular optimisers, Rprop and SGD to see if they can reduce loss.

4.1.1.3 Loss Function

Mean squared error (MSE), alternatively known as squared L2 norm, is frequently used for optimisation
problems. It is more suitable than alternatives, such as mean absolute error (MAE), for data with many outliers
[61] and therefore, has been chosen as the loss function. MSE calculates the average squared difference
between each output’s actual value and predicted value. As a result, values lie within the range [0, «]. For the
autoencoder, the predicted value is input xx and its actual output is xk' as shown in Equation 4. This
hyperparameter must not be changed throughout testing and evaluation so that loss is calculated consistently.

n

1
MSE=;Zk=1(

X — x)?
Equation 4: Mean squared error [62]

Where:

n is the batch size

xk is the k" input

xK’ is the kt" output

Yr_iyristhesumofallyfork=1,2,..,n

(xk - x')? is the difference between k" input and kt" output squared

* & & o o

4.1.1.4 Activation Function

Activation functions are applied to the output of a neuron. If a threshold value is reached then the neuron fires
and it is said to have been activated. While if the activation function of a neuron is not specificed, it is linear.
This is the function f(x) = cx, in which x is the neuron’s output and c is a constant. This means that activation is
directly proportionate to input.

If a network only uses linear activation functions, this can cause an issue because the gradient is always constant
with no relationship to x. Any changes made by backpropogation will not depend on the change of input [63].
Therefore it is good practise to use both linear and non-linear functions (see Figure 17). ReLU is recommended
when the shape of the function you wish to approximate is unknown [63]. For this reason, it has been selected
as hidden layer activation function for the autoencoder. However, other activation fuctions will be tested during
Testing and Validation.

Rectified Linear Unit

(ReLU) Leaky ReLU Exponential LU Sigmoid Hyperbolic Tangent
1 1 2 1 1 /._ 1
-1 -1 -1 K A
-1 0 1 A 0 1 A 0 14 0 1A 0 1
>0
y=max (8, x) y=max{ax,Xx) y={zze,(_1) s :w y=1/(1+e™) y=(eX-e™¥)/(e*+e™¥)

a = small const. (e.g. 0.1)

Figure 17: Non-linear activation functions [107] -
lteration Validation Training (blue)

1

4.1.1.5 K-Fold Cross Validation

Cross validation is a statistical method to approximate performance of a
model on unseen data. This is useful to improve accuracy of a model with
few training samples [64]. For this project, it will be used to split data into N
training and validation sets.

First data is shuffled, then split into k groups. Over k iterations, each group

is held out as the validation set, while remaining groups are training sets. 5
The model is trained and evaluated on the validation data. The best dataset
split is then selected to train the final model. Figure 18: 5-fold cross validation [108]

31

4.1.2 Clustering

Input
encoded or
original data

Standardize
data?

Apply Extract principal Standardize principal Perform Match best

standardization components components clustering fittingl ctl)uTters to
abels

Figure 19: Flowchart of clustering steps

The figure above displays the steps required to cluster the encoding or the original gene count data. Before a
clustering algorithm is applied, standardization can be optionally used before running PCA to extract the top
components. After the principal components will be standardized. This process, shown by Equation 5, shifts and
scales features so that they have a mean of 0 and standard deviation 1. Feature scaling is useful for algorithms
such as k-means to ensure that all features are within the same range when calculating distance [65]. Once
clusters have been assigned, data points will be plotted, and colour coded accordingly.

x—mean(x)

X -
stand standard deviation (x)

Equation 5: Standardization or Z-score normalisation [65]

4.1.2.1 K-Means

Assigning a cluster to a data point is decided by computing the sum of the squared error (SSE) displayed in
Equation 6. This is the sum of the squared Euclidean distance between a data point and its nearest centroid. The
aim of the k-means algorithm is to minimise this error [36]. Due to the non-deterministic nature of k-means,
often the algorithm is run multiple times on the same input and the cluster assignments with the lowest SSE are
selected [36].

k
_ E 2
SSE = . ercid (x,m;)
Equation 6: Sum of Squared Error (SSE) [66]

Where:

¢ Xxisadatapoint in cluster G
¢ m;is the representative point for C, i.e., the centre of the cluster
¢ dis the Euclidean distance between x and m;

The elbow method and the silhouette coefficient are two popular methods to find the optimal number of
clusters k. To implement the elbow method, k-means is run for several values of k and plotted against SSE. The

32

point at which the curve starts to bend down is known as the elbow point. This is the best trade-off between
error and number of clusters [36]. For example, in Figure 20, this value is 3. The silhouette coefficient studies
the clarity of clusters and the distance between them. It has a range of [-1, 1] and the average is plotted against
a range of k values. The best k is the one that scores the highest [36].

400 0.60

e
n
e}

300

e
%3
=}

e
s
n

@ 200

e
s
=}

100

E
Silhouette Coefficient

e
w
e}

12 3 4 5 & 7 8 9 10 2 3 a4
Number of Clusters

5 6 7 8 9 10
Number of Clusters

Figure 20: Elbow method (left) and silhouette coefficient (right) [36]

4.1.2.1 Measuring Cluster Accuracy

Labels Clusters

The metadata of each dataset contains the cell line or group of each cell. These can
be converted to numeric representations and used as labels to determine a
sample’s true cluster. However, as k-means assigns an arbitrary value between 0
and k - 1 to each cluster, predicted and actual clusters cannot be directly
compared. This means a standard accuracy score will not be reliable as the true and
predicted labels may not match even if all clusters are the same.

To overcome this problem, it is necessary to figure out which mapping between
predicted and actual labels produce the highest accuracy. A bipartite graph is a
type of graph in which each edge connects vertexes from two sets [67] and so one
method is to construct a bipartite graph between predicted and actual labels
(Figure 21) [68]. The graph can then be solved using the Hungarian matching
algorithm to find the maximal-weight matchings [68]. This is the mapping between
predicted and actual labels and once obtained, accuracy can be calculated.

Figure 21: Bipartite graph matching
labels to predicted clusters

4.1.2.2 Adjusted Rand Index (ARI)

The Rand index (Equation 7) is another method to measure the similarity between a set of clusters and their true
labels. It returns a value between 0 to 1 in which O means that no points in the clusters match their true label,
while 1 indicates they all match [69].

Rl = TP+TN
TP+FP+FN+TN

Equation 7: Rand index [69]
Where:

TP is the number of true positives
TN is the number of true negatives
FP is the number of false positives
FN is the number of false negatives

* & o o

The adjusted Rand index (Equation 8) is the RI score adjusted for chance. This is used because the number of
clusters or size distribution between them can vary depending on the clustering technique [69]. Unlike the R, it
is possible for ARI to return a negative value.

RI-Expected RI
Maximum RI—-Expected RI

ARI =

Equation 8: Adjusted Rand index [70]

For the benchmarking dataset, scores from experiments using many different clustering evaluation methods are
available. | decided upon ARI as it allows me to quantitively compare the results of this project with the results
of others. However, it is worth mentioning that the benchmarking set contains the results from many different

33

clustering algorithms, normalisation techniques and imputation methods which | will not be able to test due to
the limited scope of this project.

4.1.3 Topological Data Analysis
4.1.2.3 Mapper

The Mapper algorithm is a TDA technique that combines dimensionality reduction, clustering, and graph
networks to produce a simplicial complex from point cloud data [71]. Kepler Mapper [41] is a Python
implementation of Mapper that will be used for this project.

The algorithm consists of the following steps:

Given a dataset X, project it to a lower dimensional space using a filter function f: X = Z.
Create a cover U = (Ui) i e of the projected data, in which | represents the set of all indexes and U; is an
interval for index i. In Kepler, this cover contains overlapping intervals constructed from n-dimensional
hypercubes.

3. For each interval U;, apply a clustering algorithm C to points within its preimage f - 1 (U;) to forms clusters
Ci1, ..., Ciki.

4. Initialise a graph by setting each cluster as a node. An edge is then added between each node if their
clusters have points in common to create the simplicial complex.

The right of Figure 22 shows an example of a graph produced by Mapper from the 2D datapoints on the left.
Height was used as the filter f, while nearest neighbours was used to cluster the cover U. For this project, | plan
on using PCA and k-means instead.

Figure 22: Mapper applied to 2D data

4.1.4 Creating Simulated Data
4.1.2.4 Splatter

Simulated data will be generated through Splatter using the Splat simulation model. The aim is to create mock
data that imitates real biological data, such as the benchmarking dataset, to test the implemented system. This
means that the benchmarking dataset will be inputted to seed the simulation model.

First the Splat model simulates mean expression levels from all genes in the dataset using a gamma distribution
with shape a and rate B. The probability that a gene is an outlier is given by m°. As the gamma distribution is
unable to capture genes with extreme expression, outliers must be created by multiplication with a log-normal
factor. Next, the means are adjusted using the Biological Coefficient of Variation (BCV). Finally, a new matrix of
cells and gene counts is produced from a Poisson distribution [72].

Splat has four variations:

Single: creates a single population of cells

Groups: produces a population of mixed cell types

Paths: generates a population in which one cell type is differentiating into another

Batches: simulate technical variation that may result when samples are processed at the same time due to
flaws using different equipment

* & o o

For this project, | will be generating groups (see Figure 23) as | aim to investigate variation within gene
expression. Additionally, it should be noted when generating the simulated data, the number of gene counts per
cell must remain the same as the original, though the number of samples may vary.

34

FOAZ (1%)

PCA L (1%)

PCA 2 (2%)
=

3
PCA 1 2%}

|y

PCAZ (2%}

eeeeee

[
PGA1(4%]

may S
POA2 (2%

Bateh

Baichz

E] B 3

[
PGA 1 (3%)

Figure 23: Top left single, top right groups, lower left paths and lower right batches [72]

4.1 Experiment Design

Planned experiments are listed in the table below. These will be carried out during and after development and
will be documented in Testing and Validation.

ID ‘ Experiment Description Parameters ‘ Outcome

1.1 Test the autoencoder’s ¢ Optimiser = Adam Record the model’s initial training and
performance for the benchmarking | ¢ Learningrate = 0.001 testing accuracy.
dataset over 40 epochs using the ¢ Loss function = MSE
parameters outlined in the System ¢ Batchsize = 32
Design section. ¢ Activation = ReLU

¢ Epochs =40

1.2 Test autoencoder performance Five different learning rates Record training and testing loss,

across different learning rates. between 0.1 and 0.00001 determine which value performed best
and set this as the autoencoder’s new
LR.

1.3 Test autoencoder accuracy and 10 different batch sizes between 1 | Decide upon the most suitable batch
training time for different batch and the number of training size in terms of loss and run time and
sizes. samples set this for the autoencoder.

14 Test autoencoder’s loss for six ¢ Rprop Deduce the optimiser that achieves the
different optimisers. ¢ SGD lowest loss and set this for the

¢ Adadelta autoencoder.
¢ AdaGrad

¢ Adam

¢ AdamW

1.5 Test autoencoder’s accuracy and Set number of hidden layers to 1, Determine the best number of hidden
run time when increasing or 3 and 5 respectively layers with regards to time and
decreasing the number of hidden performance and set this for the
layers. autoencoder.

1.6 Test autoencoder performance for ¢ Linear Document testing and training loss for
seven different activation ¢ RelU each and select the best for the
functions. ¢ Leaky ReLU autoencoder.

¢ PRelLU
¢ ELU
¢+ Sigmoid

35

¢ Tanh

1.7 Run autoencoder training over Epochs = 400 Produce a graph of training and
many epochs and determine when validation loss and decide the optimal
the model starts overfitting. number of epochs.
21 Use 5-fold cross validation to split ¢ k=5 The split with the lowest validation loss
data into training and validation. ¢ Epochs =20 will be selected.
2.2 Train autoencoders on each Set autoencoder to use optimised | Record training and testing accuracy
dataset. hyperparameters found in prior and save each model’s weights to file.
experiments
3.1.1 | Use the Elbow method and Set number of clusters between 2 | Plot graphs for each, establish the best
silhouette coefficient to find the to 10 k and set this as the number of clusters
best number of clusters for k- for k-means.
means.
3.1.2 | Perform k-means clustering on ¢ Encoded data Produce graphs of clusters, calculate
each dataset. ¢ Oiriginal data accuracy and ARl and document in
¢ Pre-standardized encoded table. Conclude the best result.
data
¢ Pre-standardized original data
3.2.1 | Plot a dendrogram to determine the | Ward linkage criterion Document dendrogram and conclude
best number of clusters for the best number of clusters for
agglomerative hierarchical hierarchical clustering.
clustering.
3.2.2 | Perform agglomerative hierarchical | ¢ Encoded data Create graphs of clusters, calculate
clustering on each dataset. ¢ Original data accuracy and ARI and document in
¢ Pre-standardized encoded table. Conclude the best result and
data compare against k-means.
¢ Pre-standardized original data
4.1 Run Kepler Mapper to produce a ¢ PCA with 2 principal Record the graphs, write a conclusion

simplicial complex for each dataset.

components
¢+ K-means clustering algorithm
¢+ €=015
¢ 10 hypercubes

and compare against clustering.

Table 7: Planned experiments

36

E Imblementation

In this part development of the Jupyter notebooks is explained. This is a necessary requirement to meet
objectives 3 - 6. Although most of the code has been omitted, it is available in notebooks. The last section,
Creating Simulated Data, explains Splat_Simulator.ipynb, while all other parts detail Clustering_and_TDA.ipynb.

5.1 Setting up the Datasets
5.1.1 Opening the Data

In the main notebook, each dataset and its metadata are automatically downloaded from URLs in either CSV or
text file format and converted to a DataFrame using pandas. As the simulated dataset has been created for this
project, it is hosted from my GitHub. For the benchmarking and simulated datasets, the gene counts and
metadata are already separated. However, for the evaluation data, pre-processing is required to extract them
from the tab-delimited text file.

The code will only perform experiments on one dataset, specified by setting the variable dataset as either
benchmark dataset, sim dataset,oreval dataset. The metadata variable will be set automatically as
the corresponding cell line or group labels if using one of these datasets. The selected data is then split into
training data (x_train)and testing data (x_test). The number of cell samples in x _test can be adjusted by
changing test size, although this has been set at 150 for the benchmarking (Figure 24) and mouse cortex
evaluation data, and 500 for the simulated data.

CELL_@0@572 CELL_600233 CELL_0600098 CELL_000200 CELL_000677 CELL_000147 CELL_000246 CELL_000384 CELL_000481 CELL_000842 CELL_000850

ENSG00000272758 0 1 1 0 1 0 2 1 0 2 0
ENSG00000154678 0 0 0 2 0 2 2 0 0 0 0
ENSG00000148737 1 4 4 1 2 4 2 3 0 0 1
ENSG00000196968 0 2 1 1 2 0 0 3 0 1 2
ENSG00000134297 2 1 1 1 0 0 1 1 0 0 1
ENSG00000237289 0 0 2 0 0 0 0 0 0 0 0
ENSG00000238098 0 3 0 0 0 0 0 0 0 0 0
ENSG00000133433 1 0 1 0 1 0 0 0 0 0 0
ENSG00000054219 0 0 0 0 0 0 0 0 0 0 0
ENSG00000137691 0 0 2 3 0 2 6 0 0 0 0

16468 rows x 150 columns

Figure 24: DataFrame showing 150 test samples from the benchmarking dataset

As the selected datasets use rows for genes and columns for cells, it is necessary to transpose cell data. This
prevents the genes incorrectly being treated as samples instead of the cells. If a new dataset is used, then it is
important to check that samples have been correctly identified as the notebook may still run but will produce
unexpected results.

5.1.2 Splitting Data into Batches

Before testing and training data can be passed into the i tAutoencoder, detailed in a later section, it must
first be converted to a custom PyTorch Dataset. The implemented class DatasetRNASeq is known as a map-
style dataset as it provides a mapping between indices and samples [73].

A DatalLoader is an object that iterates over a dataset and allows samples to be split into batches [74]. After
changing training and testing data into DatasetRNASeq, they are then converted to dataloaders. Batch size
was initially set to 32 but can be changed by updating the batch size global variable.

5.2 Autoencoder
5.2.1 LitAutoencoder Class

The autoencoder was implemented as a PyTorch Lightning class 1.i tAutoencoder. This class takes input three
dataloaders and the number of input / output features. Other hyperparameters can be set by changing the
keyword arguments autoencoder kwargs. These include: the number of hidden features and layers, loss
function, optimiser, learning rate and activation function. Once an autoencoder has been initialised, the

https://github.com/TomMakesThings/Clustering-and-TDA-of-scRNA-seq-Data/tree/main/Data/Datasets

37

hyperparameters are saved temporarily to a YAML file so that the model state that reaches the lowest validation
loss can be loaded again from a checkpoint.

Within the model, the encoder and decoder are separated as Sequential containers consisting of Linear
layer(s) and activation function(s), though the exact structure depends on the hyperparameters. As well as the
model layers, the class also encapsulates the training, validation and testing steps and logs the results to
TensorBoard.

5.2.2 K-Fold Cross Validation

Before fully training the model, k-fold cross validation is used to split the data assigned for training into train and
validation sets. The autoencoder is run over a low number of epochs, such as 20, and the final validation loss of
each fold is recorded. Once all folds have been tested, the training and validation data that achieves the lowest
loss is selected and converted to dataloaders.

5.2.3 Autoencoder Training

When training a new model, PyTorch Lightning requires the model to be fit to a Trainer. This class puts the
model into training mode, iterates through the batches in the train data loader, calculates the loss and performs
backpropagation to update the model’s weights [75]. Additionally, the Trainer will place the model onto GPU
if available as this can decrease training time considerably.

The PyTorch learning rate finder can optionally be used before training. This will test a range of learning rates
and then set the best as the learning rate of the optimiser. However, | did not find this improved performance as
explained during Testing and Validation.

5.2.4 Saving Model State to File

Once an autoencoder has been trained, it can be saved to file by setting download model to True. This will
save lists of the selected for train, test and validation to text files and the best model state is saved as a
checkpoint file. These files may then be reloaded to restore the model’s state and continue training if required.
Saving the model was useful for this project as it prevented me from having to train a new model each time and
allows the results of the experiments to be reproducible.

5.2.4.1 Solving the File Size Problem

While developing the notebook, | initially saved and loaded the train, test and validation dataloaders and
checkpoint file from Google Drive to restore the states of the trained model. Although this was fine for
performing experiments, it became a problem when | tried to upload these files to GitHub as most of the files
(see Figure 25) exceeded the limit of 25,000 KB.

Name Date modified Type

. autoencoder-epoch=247-val_loss=56.86.. / 747 CKPT File

. test dataloader.pth /02/ PTH File
i PTH File

PTH File

Figure 25: Checkpoint (CKPT) and test, train and validation DatalLoader (PTH) files for the benchmarking autoencoder

After some research, | discovered the size of checkpoint files could be reduced by saving only the model’s
weights to the ModelCheckpoint rather than the entire model state [76].

1 checkpoint callback = ModelCheckpoint (monitor="'val loss', mode='min',
2 save weights only = True,
3 filename='autoencoder-{epoch:02d}-{val loss:.2f}")

However, the models states had already been saved, and so | was required to write a custom function
convert to weights only to remove the optimiser state, learning rate scheduler information and callbacks.
While removing this information would impact the autoencoder if it were trained further as the optimiser’s state
would be reset, this was not an issue as | had completed training and only need to restore the model’s best state
to encode the data.

38

1 def convert to weights only(checkpoint file, new file name="checkpoint weights.ckpt") :
2 key to remove = {'optimizer states', 'lr schedulers', 'callbacks'}

3 # Load the checkpoint from file

4. checkpoint dict = torch.load(checkpoint file, map location=torch.device ('cpu'))

5. # Remove the keys not found in save weights only

6 for key in key to remove:

7 checkpoint dict.pop (key, None)

8 # Save the checkpoint

9

. if not new file name.endswith('.ckpt'):

10. new file name = new file name + '.ckpt'

11. torch.save (checkpoint dict, new file name)

12. print ("Saved checkpoint to " + str(new file name))

Instead of saving dataloaders to file, | saved the names of the cells in the test, train and validation splits to text
files. These can then be used to reconstruct the dataloaders and the notebook will automatically now save to
text file if run again. As demonstrated in Figure 26, updating the checkpoint and dataloader files resulted in a
massive reduction to the file sizes of the model state. These files were then as zipped to reduce size further and
uploaded to GitHub. This means that a user can now run the notebooks using the pre-trained models without
being required to upload any files.

Name Date modified Type

0 benchmark _autoencoder weights.ckpt 5/05/2021 12:2 CKPT File

B test_data 2 Text Document
. train_data / 9 Text Document

B validation_data 5/05/2021 14:05 Text Document

Figure 26: Reduced size checkpoint (CKPT) and test, train and validation tex files for the benchmarking autoencoder

5.2.5 Autoencoder Testing

Once an autoencoder is trained, it is evaluated on test data and the average loss displayed. Graphs of training
and testing performance can be viewed using TensorBoard. Then an encoding is produced from the test data to
be used during clustering.

5.3 Clustering
5.3.1 Set up Data and Labels

Standardized versions of the both the encoded and original test data are produced using scikit-learn’s
StandardScaler. Along with the unstandardized versions, this provides four variations of the data to test
during the clustering experiments.

As each dataset’s metadata contains either group or cell line labels, these are used to provide a ground truth to
compare against the cluster assignment of each cell. First though, each unique label is assigned a numerical
representation and a list test _cell labels is produced containing the target labels of each cell in the test
data as demonstrated in Figure 27.

Mapping between cell lines and numerical value:
{'H1975": @, "H2228"': 1, 'HCC827': 2}

Numerical values of target clusters:
[e, e, 0,1, 0,1,1, 2, 2,0,0,1,1,1,0,1,1,e1,1,86, 2,1, 0,06, 2,1, 2,1,80,2,1,1, 2,1, 2, 2,1, 1, 2, 2, 1, 1, 8, 2,

Figure 27: Print screen of assigning numerical values to the cell lines labels of the benchmarking dataset

5.3.2 K-Means
5.3.2.1 Elbow Method and Silhouette Coefficient

Before applying k-means clustering, the best number of clusters k is determined using the elbow method and
silhouette coefficient. The custom function elbow method will test KMeans with k clusters for k between 2
and a value max_k set by the user. For each attempt, the sum of the squared error is added to a list and plotted
against the number of clusters, then the function KneelLocator is used to mark the elbow point on the graph.
The function silhouette coefficient issimilar, though instead plots the silhouette score against cluster

number and marks the best k on the graph as the value that achieves the highest score.

5.3.2.2 K-Means Clustering

Before a clustering algorithm is applied, a dimensionality reduction technique is used to extract representational
features from the data and then standardization is applied. Initially PCA was used, although later | extended the
functionality to support Independent Component Analysis (ICA), Non-Negative Matrix Factorization (NMF) and
t-SNE. Then k-means is run on a version of the data specified by the user and interactive graphs are returned.

Graphs of the predicted clusters are plotted as either a K-Means Clustering on 2 Components Using PCA

2D or 3D scatter chart using Plotly [77]. This library was

selected as it allows custom text to appear when a user

hovers their cursor over a data point. For the project, , : . . o
this was set to display the cell names and the cell lines or

groups if provided.) . A .
Additionally, if the ground truth is available, a new trace) . - . .
‘Actual’ displaying the target labels is added to the plot
(see Figure 28), as well as a trace ‘Difference’ that S . .
highlights the incorrect predictions in red. To calculate P T Py . e mee. .
this difference, first a bipartite graph is constructed 4-_' X X0 . o B0
between the predicted clusters and their target labels. H ‘e s °
Then the function 1inear sum assignment isrunto ., .

find the best match between the clusters and labels -t o : : 3
according to the Hungarian matching algorithm. The

numbers assigned to the predicted cluster are then Accuracy: 66.667%

Adjusted Rand Index: ©0.396

updated to match their most likely label and the Silhouette Cosfficiant: 0.5

accuracy are ARI between the two calculated. Figure 28: Example graph showing cell lines of the benchmark dataset
and its accuracy, ARl and silhouette coefficient

PC
.
.
.
a®
-
.
.

The silhouette coefficient is also calculated, though this
does not require the ground truth. Then the three
metrics are printed below the graph as demonstrated in Figure 28. Optionally, a user may save the graph as an
HTML file.

5.3.2.3 Fixing the Issue of Matching Cell Names to Values

When a dataset is split for testing and training, the order of the samples is shuffled resulting in different test-
train splits each time the notebook is run. When setting up clustering after loading the optimised autoencoder
for the benchmarking dataset, | was running k-means on the samples in the test dataloader loaded from file
yet getting cells names from the columns in DataFrame x_test (shown before in Figure 24) to display on the
graph. Although the code ran, it meant the cell names did not match their values, and this was not apparent until
| was trying to match the cells to their cell line labels. This issue has since been resolved through reading the cell
names from the test data saved to file when loading a pre-trained model.

Best Number of Components
10 *

o
o

5.3.2.4 Finding the Best Numbers of Components

o
@

After first running k-means with a set dimensionality reduction technique, such
as PCA, on two and three components, a custom function

find best components is used to test higher number of components against
a given measure. This can be either: accuracy, ARI or silhouette coefficient.
Internally this function will run the clustering algorithm multiple times to test a S N e s
range of components between 2 and a set value max components. The fumber of Compenents

average score of the measure for each number of components is returned and
displayed as a graph through function plot components, and scores
presented as a DataFrame (Figure 29).

Adjusted Rand Index
°
<

=
o

o
n

o
=

2 3 4 5 6

ARl 0.39559 0.959318 0.980161 0.980161 0.980161

. Figure 29: Example showing the effect of
The optimal number of components is then retrieved, and k-means is once again jncreasing principal components on ARI

run to produce 2D and 3D graphs of the clusters with the best component for the encoded benchmark dataset
number. If PCA was used for dimensionality-reduction, then additional graphs
are displayed showing how much each principal component contributes to the variation of the data.

40

Contribution of Principal Component to Variance

035 10 —
030
025 yd

—

T

0.00

012345678 910111131815 01234567 E80910111213K15
Principal Companent Principal Component

© o ©
N o @

=
o

Variance Ratio
Cumulative Variance Ratio

©
I

3
e

2 3 4 5 6 7 8 9 le 11 12 13 14 15 16 17

Variance Contribution 0.352361 0.152573 0.132177 0.088285 0.0542 0.04546 0.040968 0.031819 0.027047 0.020509 0.013641 0.011932 0.009256 0.008024 0.007051 0.004698

Figure 30: Example graphs revealing the gain in variation with the addition of each principal component for the encoded
benchmarking data

5.3.3 Agglomerative Hierarchical Clustering

The graph to determine the best number of clusters is plotted using SciPy’'s dendrogram function. The
clustering algorithm can be changed from k-means by setting variable algorithm. Then as before, clustering
can be run in combination with a dimensionality reduction technique and 2D and 3D graphs displayed.

5.3.4 Alternative Clustering Algorithms

Along with k-means and agglomerative hierarchical, four new clustering algorithms are tested including: BIRCH,
mini-batch k-means, spectral clustering, and Gaussian mixture. These are explained in more detail in Testing and
Validation as they were not originally included in the project’s design. A for loop is run that iterates through
each combination of clustering algorithm and components for dimensionality reduction on both the encoded
and original data with and without pre-standardization. The combination for each clustering algorithm that
achieves either the highest accuracy or silhouette coefficient is then presented in a DataFrame, such as in Figure
31, and plotted as a bar chart. Then the algorithm that performs best overall is run and the clusters plotted.

Accuracy Number Incorrect Components Encoded Standardized

K-Means 0.997783 2 3 False True
Hierarchical 0.998891 1 3 False True
Birch 0.998891 1 3 False True

Mini Batch K-Means 0.997783 2 3 False True
Spectral Clustering 0.998891 1 4 False True
Gaussian Mixture 0.997783 2 3 False True

Figure 31: Example of testing ICA with different numbers of components on the benchmarking data

5.4 Topological Data Analysis
5.4.1 Kepler Mapper

Kepler Mapper is run on all samples in each dataset individually. First, data is projected to a lower dimensional
space using PCA with two principal components. Then the Mapper algorithm is run to produce a simplicial
complex which can be downloaded as an HTML file.

5.4.1.1 Setting Parameters

Some trial and error was required to find suitable values for €, known as perc_overlap, and the number of
hypercubes n _cubes on the first dataset. When € was small, many of the nodes were separated, while
increasing it too much resulted in most nodes being connected losing the topological features (see Figure 32).
Similarly, using only a few hypercubes created a simple graph, while increasing this revealed more complexity
(see Figure 33). As a compromise between the two, | selected 10 hypercubes and € as 0.15. Note clicking the
figures will open hyperlinks to the graphs.

41

Figure 33: (Clickable) Testing 2, 5, 25 and 50 cubes for the benchmarking dataset

5.5 Creating Simulated Data

The simulated data was created in a separate notebook
Splat_Simulator.ipynb. This notebook contains both Python and inline R.
Although Python implementations of Bioconductor and Splatter exist, they
were created as R frameworks and so | decided to use R so | could follow
the official documentation.

5.5.1 Opening the Benchmarking Dataset

The benchmarking data is downloaded from GitHub as dataset, the
number of features per sample is recorded as total genes, while the
matrix of gene reads, in which each row is a gene, and each column is a cell,
is referred to as counts.

5.5.2 Creating a New Dataset

First, splatEstimate creates parameters mimicking the original dataset
which are then used by splatSimulate to create new data. The counts
are obtained, and the first two principal components extracted by PCA to
plot the new cells (see Figure 35). As no method was given to
splatSimulate, Splat generates single data in which all cells are of the
same type. However, as | wish to investigate variation in gene expression, a
second simulation is created where cells are split into four groups in a ratio
of 40% : 15% : 20% : 25%. Average gene expression between the single
group of simulated data (Splat_Single), two group of simulated data

PEAZ (1%)

PCAL (19%)

PCA2 (1%)

pcat @3

Figure 34: Single group of simulated cells (top)
and four groups of simulated cells (lower)

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Parameter_Optimisation/scRNAseq_graph_%CF%B5%3D0.05.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Parameter_Optimisation/scRNAseq_graph_%CF%B5%3D0.2.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Parameter_Optimisation/scRNAseq_graph_%CF%B5%3D0.4.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Parameter_Optimisation/scRNAseq_graph_%CF%B5%3D0.8.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Parameter_Optimisation/scRNAseq_graph_cubes%3D2.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Parameter_Optimisation/scRNAseq_graph_cubes%3D25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Parameter_Optimisation/scRNAseq_graph_cubes%3D5.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Parameter_Optimisation/scRNAseq_graph_cubes%3D50.html

42

(Splat_Groups) and the original dataset (sc_10x) is compared through
plotting the distribution of mean gene expression (Figure 35). Although
there is visible difference between the simulated data and the original, the
similar shapes suggest Splat has performed well at mimicking the gene
expression of the real biological data. Finally, the new dataset and its group
labels were saved as CSV files and uploaded to GitHub.

Mean log(CPM + 1)

Splat_single Splat_Groups sc_10n
Dataset

Figure 35: Comparing distribution of mean
gene expression between Splat and real data

https://github.com/TomMakesThings/Clustering-and-TDA-of-scRNA-seq-Data/tree/main/Data/Datasets

A Tectino and VValidation

Testing and Validation explains the technical details of datasets, documents experiments and evaluates results.
For a list of all planned experiments, see Experiment Design.

6.1 Datasets

This part explains the contents of each dataset, their dimensions, metadata and how each was used during
training, testing and validation.

6.1.1 Benchmarking Data
6.1.1.1 Count Data

The first dataset comprises 16468 genes x 902 cells. This means there are 902 samples, each with 16468
features as shown in Figure 36. The name of each gene is an Ensembl ID, in which the ENSG tag indicates it
represents a genomic region and the number is a unique identifier [78].

Benchmarking Dataset:

CELL_eeeeel CELL_ CELL_ CELL_ CELL_ CELL_ CELL_o@oee7 CELL_ooo@e8 CELL_ooeees
ENSG00000272758 0 0 0 2 0 0 0 1 1
ENSG00000154678 0 0 0 1 0 1 0 0 1
ENSG00000148737 0 0 0 1 3 2 0 2 1
ENSG00000196968 0 0 0 1 2 2 5 0 4
ENSG00000134297 0 0 0 1 1 1 2 1 3
ENSG00000237289 0 1 0 0 0 0 0 0 0
ENSG00000238098 0 0 0 0 1 0 0 0 0
ENSG00000133433 0 0 0 0 0 1 0 0 0
ENSG00000054219 1 0 0 0 0 0 0 0 0
ENSG00000137691 0 3 0 0 0 0 0 0 0

16468 rows x 902 columns
Figure 36: Print screen of sc_10x

As explained during the Literature Review, this dataset was selected for testing during development. Therefore,
Clustering and Topological Data Analysis experiments are first conducted on this data.

During Autoencoder Optimisation, the set is shuffled and split into 602 training samples, 150 validation samples
and 150 testing samples, although the samples remain the same for each test. In Training the Optimised
Network, the set is shuffled and initially split into 752 training and 150 testing samples. K-fold cross validation is
performed to separate the training samples into 80% train and 20% validation.

6 1 1 2 Metadata cell Lines in Benchmarking Dataset:

cell line

In the count data above, biological variation is present because cells were cultivated
from three different cell lines. As a result, metadata contains the cell line of each
sample as demonstrated in Figure 37. This has been used to provide a ground truth

CELL_000001 HCC827
CELL_000002 H1975

during CIUStering. CELL_000003 HCC827

CELL_000004 HCC827
Additionally, the metadata includes the adjusted Rand index from experiments by L. CELL_000005 HCG827
Tian et al. [79]. These experiments explore applying a range of normalisation
techniques, imputation methods and clustering algorithms to a lower-dimensional CELL 000939 H1975
representation of sc_10x extracted through t-SNE and the first two principal CELL 000943 H1975
components of PCA [79]. CELL 000946 2228

The results and a graph comparing ARI for each clustering method are displayed in CELL_000935 HCCez7

Figure 39 and Figure 40 respectively. As evident in the graph, some clustering

algorithms over-clustered resulting in poor ARI, while those closer to the true number ~ 802rowsx 1 columns

of clusters, represented by the dotted line, performed better. The best ARl is 0.742, Figure 37: Print screen of
benchmarking data cell lines

CELL_000965 HCC827

https://www.researchgate.net/publication/328071371_scRNA-seq_mixology_towards_better_benchmarking_of_single_cell_RNA-seq_protocols_and_analysis_methods
https://www.researchgate.net/publication/328071371_scRNA-seq_mixology_towards_better_benchmarking_of_single_cell_RNA-seq_protocols_and_analysis_methods

the worst is 0.095 while overall, there is a mean average of 0.436. These provide a second comparison to
evaluate the performance of my own clustering experiments.

ARI for Clustering Experiments on Benchmarking Dataset:

norm_method impute_method clustering_method result

9701 TMM Drimpute SC3 0.741936 . N
Seil
10373 scone Drimpute SC3 0.741936
0.6

9477 DESeq2 Drimpute SC3 0.741291 —

T RacelD
9253 scran Drimpute SC3 0.741291 < i

x

)
10157 Linnorm SAVER SC3 0.741144 B 04

£

S RCA

c .
4293 scone knn_smooth2 Seurat_1.6 0.228908 g sc3

B
4357 SCnorm knn_smooth2 Seurat_1.6 0.226527 ‘g 0.2 RacelD2-
4165 logCPM knn_smooth2 Seurat_1.6 0.225011 ®
4229 Linnorm knn_smooth2 Seurat_1.6 0.216451
10381 scone SAVER SC3 0.095372 00

0 25 50 75 100
127 rows x 4 columns number of cluster
Figure 39: Print screen of benchmarking ARI Figure 38: ARI for a range of clustering techniques [79]

6.1.2 Simulated Data
6.1.2.1 Count Data

The simulated dataset (left in Figure 41) was created to imitate the variation in gene expression of the
benchmarking dataset. It contains 2000 samples, with the same number of genes as the original (16468). The
creation of this data is explained under .

Splat simulated Dataset: Groups in Simulated Dataset:

Celll cell2 cells celld cells cellé cell?7 cells cells cellie cellil cellil2 celli3

GrUUP
Genet 2 8 1 74 2 0 1 1 2 0 4 6 P —
Gene2 0 0 0 0 0 0 0 0 0 0 0 0 0 Cel2 Groups
Gene3 2 4 2 5 0 7 0 2 0 6 0 1 2 Cellz Groupd
Gened 0 0 7 0 0 0 0 1 0 0 0 0 0 Celld Groups
Gene5 2 1 0 0 0 0 0 0 0 0 0 1 0 Cell5 Group2
Gene16464 0 0 1 0 0 0 0 0 0 0 0 0 0 Cell1996 Group3
Gene16465 1 4 0 0 2 6 2 9 0 8 1 14 6 Cell1997 Group1
Gene16466 5 12 1 8 5 7 0 7 1 7 2 3 12 Cell1998 Group1
Gene16467 0 5 o] 0 0 1 0 0 5 2 5 0 0 Cell1999 Group3
Gene16468 3 0 0 0] 1 2 1 0 0 0 0 0 0 Cell2000 Group4
16468 rows x 2000 columns 2000 rows x 1 columns

Figure 40: Simulated data
group labels

Figure 41: Print screen of simulated data

As the simulated count data has the number of dimensions as the benchmarking data, it could be directly
encoded with the autoencoder created during Training the Optimised Network. However, as Splatter was not
able to replicate the same high-dimensional shapes of real cell lines, this meant a new autoencoder had to be
trained. The encoded data is then used during experiments in Clustering and Topological Data Analysis.

6.1.2.2 Metadata

Like the cell line labels in the benchmarking data, cells are split into four groups of gene expression as presented
above to the right of Figure 40. As the data has been generated, this guarantees that each cell’s group is correct.
Again, this is explained further during Clustering.

45

6.1.3 Mouse Cortex Evaluation Data

6.1.3.1 Count Data

This dataset contains 1072 genes x 3005 cells as shown by the leftmost table in Figure 43. As there are three
general class of RNA molecule, the names of some genes have been marked with tRNA (transfer RNA) or rRNA
(ribosomal RNA). For this data, a new autoencoder had to be trained as it does not contain the same number of
genes. 2004 samples were used for training, 501 for validation and 500 were set aside for testing. Again, this

data was used to provide a comparison during Clustering and Topological Data Analysis.

Evaluation Dataset:

1772071015_C02 1772071017_G12 1772071017_A@5 1772071014_Bo6 1772067065_Ho6 1772071017_E02

r_HY1 0 1 0 1 2 1
r_HY3 4 0 0 1 5 0
r_LTR33A_ 0 0 0 0 0 0
r_RLTR10A 0 1 0 3 0 5
r_IAPLTR1_Mm 50 25 45 30 5 62
r_us 0 0 0 0 0 0
r_tRNA-Arg-
ceY. 1 8 0 0 0 0
r_tRNA-Ala-
ey 0 0 0 0 0 0
r_u4 0 7 0 0 0 0
r_tRNA-Ser-
TcG 0 0 0 0 0 0

1072 rows x 3005 columns

Figure 43: Print screen of mouse cortex data

6.1.3.2 Metadata

Groups in Evaluation Dataset:

1772071015_C02
1772071017_G12
1772071017_A05
1772071014_B06
1772067065_HO06

1772067059_B04
1772066097_D04
1772063068_D01
1772066098_A12
1772058148_F03

levellclass
interneurons
interneurons
interneurons
interneurons

interneurons

endothelial-mural
endothelial-mural
endothelial-mural
endothelial-mural

endothelial-mural

3005 rows x 1 columns

Figure 42: Mouse cortex data
group labels

Each cell has been assigned to one of nine groups, and then one of 47 sub-groups determined using the
BackSPIN clustering algorithm [50]. This means that this dataset should contain a larger range of genetic
variation than the previous two. For this project | selected the level 1 classes to use as targets for clustering
(Figure 42). These cell type labels derived from the first group assignments, though groups 1 and 2 are assigned
joint class “pyramidal CA1”, and 7 and 8 “astrocytes_ependymal”. However, because the labels were created
using an algorithm as opposed to human annotation, this ground truth may be less reliable.

6.2 Autoencoder Optimisation

The autoencoder’s architecture was implemented according to the design in section 4.1.1. Adam is set as the

optimiser with default learning rate 1e-3, batch size is set to 32 and the ReLU activation function is applied to all
hidden layers, except the encoded output layer. As stated by objective 4, these hyperparameters will be updated
throughout the experiments to improve the model’s accuracy. All experiments are run on the benchmarking data

across 40 epochs unless stated otherwise so that a fair comparison can be made.

6.2.1 Testing the Initial Model 25643

The model was run using the hyperparameters specified by the 2e+3
original design. The final loss after 40 epochs for training and testing is
recorded in Table 8, while testing and validation loss across epochs
are presented in Figure 44.

189.7 80.3 0

Table 8: Loss of first run after 40 epochs

@ Training

@ Validation

Figure 44: Loss (MSE) across 40 epochs
for first run

The training loss is far higher than the testing loss implying the model 1,643
is underfitting. This was because the dataset was not shuffled before @ Training
splitting into training, validation, and testing. After re-arranging the 1243 @ Vaiication
columns in the dataset, the results were updated as shown in Table 9
and Figure 45. 800
400
157.5 151.6 ; °
0 5 10 15 20 25 30 35

Table 9: Loss of second run after 40 epochs

Figure 45: Loss (MSE) across 40 epochs
dfter shuffling

Now testing and training loss is much closer indicating that the model is no longer underfitting. The final testing
accuracy was 32.0%, signifying that for each sample, an average of 16468 x 32% = 5270 gene counts were
recreated correctly. A print screen of a batch’s input and recreated output can be seen in Appendix B.

6.2.2 Learning Rate

The network was trained separately five times with different learning rates between 0.00001 to 0.1. Each time
over 40 epochs using batch size 32, Adam optimiser and 602 training samples, 150 validation samples and 150
testing samples. Loss after training and testing was recorded in the Table 10 and plotted in Figure 46.

Learning Train Test 900
Rate MSE MSE 800
le-1 537 603.2 700
600
le-2 326.4 357.2 w 500
> 400 g Training
le-3 157.7 160.4 200 — o = Testing
le-4 309.5 338.7 200
1e-5 7753 | 819.6 100
0
Table 10: Performance for different 1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05
learning rates Learning Rate

Figure 46: Loss (MSE) after 40 epochs for 5 different learning rates

The results suggest the best value is 1e-3 as it has the lowest testing and training error (highlighted red). To
further tune learning rate, | ran the PyTorch Lightning learning rate finder across 100 values between 10 to
1072 as this is the range in which the optimum can be found. The resulting graph is shown in Figure 47.

Learning Rate Range Test 16843
18001 @ Training
f 1.2e+3
1600 @ Validation
1400 i
- 800
3 1200 jj
"
1000 100
800 0
10* 1073 1072 : o . - - -
Leamning rate 5 10 5 20 25 30 35

Figure 47: Learning rate finder results (left) and MSE over epochs for 0.000794 learning rate (right)

The learning rate range test suggested that 0.000794, marked by the red circle on Figure 47, would be the
optimum. This value was used to train the model across 40 epochs to compare with the learning rates tested
previously (see Table 11).

47

Learning Rate Train MSE ‘ Test MSE

0.000794 463.6 805.1

le-3 157.7 160.4

Table 11: Performance of recommended range test learning rate vs 1e-3 over 40 epochs

The proposed learning rate has a far higher testing and training loss than 1e-3. While it is possible 0.000794
could outperform 1e-3 after more epochs, this is unlikely as indicated by Figure 47. This graph reveals training
loss quickly converges to an optimum of 325.1 after four epochs, before increasing after 35 epochs.

6.2.2.1 Conclusion

Learning rate 1e-3 has both the lowest testing and training MSE and so has been selected. The value proposed
by the learning rate finder is not suitable because it quickly converges to a poor loss value before the model
starts overfitting.

6.2.3 Batch Size

To optimise batch size, the loss and run time for 10 values between 1 to 602 were recorded in Table 12. Final
testing and training loss after 40 epochs is plotted in Figure 49, while Figure 48 shows change in training loss
per epoch. Note that Figure 48 uses a Y-axis log scale as this helps to distinguish each bath size’s performance.

Size MSE MSE Time (s)

Batch Train Test Train 600

500
1 96.3 128.1 167
400
2 94.0 125.5 113 W
2 300 .
4 94.0 119.2 85 >3 =+ Training
= el = Testin,
8 1177 | 157.8 | 72 200 :
16 1534 | 2014 |64 100
32 150.4 194.9 60 0
1 2 4 8 16 32 64 128 256 602
64 1944 | 2345 |59 Batch Size
128 3014 3494 58 Figure 49: Testing and training loss (MSE) after 40 epochs for 10 batch sizes
256 302.8 377.4 59 L
602 438.0 534.0 59 o2
Table 12: Performance for different batch sizes N 4
over 40 epochs o0 8
- o 16
6.2.3.1 Conclusion %Y
Batch size 2 and 4 have joint best final MSE in @ 64
tr‘aining, while 4 has th(? Iowe:st i'n'testing. . ® 12
Figure 48 shows there is no significant
difference in trend for batch size 2and 4,and ~ © T _ __ _ 256
it could be possible that 2 performs better ’ ' U N “ - * ® <02

over a higher number of epochs. However, a Figure 48: Training loss (MSE) over 40 epochs for 10 batch sizes
larger batch size significantly improves the

training time of the model and so batch size 4
has been selected.

48

6.2.4 Optimiser Selection

Batch size was set as 4 and six optimisers evaluated over 40 epochs. For each, learning rate remained at 1e-3
and all other hyperparameters were kept at their defaults (see Table 13). As the loss for SGD was too high, a
number could not be produced and so it could not be included in Figure 50 and Figure 51.

Optimiser Train MSE Test MSE 400
350

Table 13: Performance for different
optimisers over 40 epochs

Adam was used before in part 6.2.3, with batch
size 4 and achieved training loss 94.0. However,

in this experiment, Adam has a lower training loss
of 89.8 despite the initial model set up being the

same. This is caused by stochastic nature of the
network. This means that the network uses

randomness, such as random weight initialisation,

which leads to variation between runs [80].

Consequently, as the performance of Adam and
AdamW were similar and neither fully converge

to an optimum after 40 epochs, | decided to test

loss of each after 100 epochs. Additionally, |
tested the performance of each with the
AMSGrad variant. This is a modification to the
update rule that aims to prevent sub-optimal
convergence [81]. The results are presented in
Table 14 and Figure 52.

Optimiser Variant Train Test
MSE MSE
Adam Standard 80.8 1004

AMSGrad | 6548 | 78.3

AdamW Standard 80.5 111.7

AMSGrad | 84.9 96.6

Table 14: Performance of Adam vs AdamW over 100
epochs

6.2.4.1 Conclusion

300
250
Ll
£ 200

Rprop 227.9 222.6

SGD NaN NaN

Adadelta 373.1 354.7 &
AdaGrad 3754 358.3 150
Adam 89.8 98.0 100
AdamW 101.8 106.5

e Training

= e = Testing

Rprop Adadelta Adagrad Adam AdamW
Optimiser
Figure 50: Testing and training loss (MSE) after 40 epochs for five optimisers

@ RProp

Adadelta
o0 \ . @ AdaGrad

® Adam

AdamW

Figure 51: Training loss (MSE) over 40 epochs for five different optimisers

@ Adam standard
Adam AMSGrad

@ AdamW standard

@ AdamW AMSGrad

10 20 30 40 50 60 70 80 90

Figure 52: Training and validation loss (MSE) across 100 epochs for
Adam and AdamW

Adam was the optimiser with the lowest testing and training loss after 40 epochs. After recording loss after 100
epochs with Adam, AdamW and their AMSGrad variants, the Adam AMSGrad variant performed best overall as
demonstrated in Figure 52. Therefore, it has been selected as the best optimiser.

49

6.2.5 Hidden Layers

The network was tested with three variations to the number of hidden layers over 40 epochs with the updated
Adam optimiser. The first variant includes only the input, encoded and output layer, the second is the original
structure, while the third introduces two new hidden layers with 1024 features (see Table 15).

Hidden Layers Layer Feature Number ‘ Train MSE | Test MSE ‘ Train Time (s) ‘
1 16468 = 16 = 16468 133.8 1324 70
3 16468 - ->16-= — 16468 108.1 133.9 92
5 16468 - 1024 = 128 - 16 = 128 102.7 150.5 510
— 1024 = 16468

Table 15: Performance based on number of hidden layers after 40 epochs

The lowest training loss was achieved when the

network had 5 hidden layers. Figure 53 reveals that 00 @ 1 hidden layer
the loss remained consistently lower than with 3 hidden layers
either 1 or 3 hidden layers. However, this 600

architecture also attained the highest run time and @ 5 hidden layers

testing loss. This high loss appears to be caused by a
spike in validation loss (left of Figure 54). This likely 100
indicates the model has started overfitting due to
the increased complexity of the architecture
preventing it from generalising on the test samples.
The right-most graph Figure 54 demonstrates that
the validation loss is more consistent with fewer 100
layers.

0 5 10 15 20 25 30 35

Figure 53: Training loss (MSE) over 40 epochs for 1, 3 and 5 hidden layers

350 @ 5 hidden testing 350 3 hidden testing

300 @ 5 hidden validation 300 @ 3 hidden validation

o
[
o
i
=
(]
o
[9%]
=)
s
o
(&4
o

20 25 30 3

(4]

Figure 54: Training and validation loss (MSE) over 40 epochs for 5 hidden layers (left) and 3 hidden layers (right)

6.2.5.1 Conclusion

Although using 5 hidden layers accomplished the best training loss, the additional layers increase training time
considerably. Testing loss was best overall when using 1 hidden layer, however, it was slightly lower than its
respective training value. This suggests the model could be underfitting which can occur when a model is not
complex enough [82]. While 3 hidden layers got neither the best training nor testing loss, it has been chosen as
the best trade-off between minimising error and run time.

6.2.6 Activation Function

The ReLU activation function is used once within the encoder, and once within the decoder on hidden layers.
Substituting ReLU for another function could reduce loss and so alternative activation functions have been
tested as demonstrated in Table 16 and Figure 55.

Activation | Train Test 600
Function | MSE MSE
500
Linear 65.8 66.6
ReLU 103.5 103.1 400
jun] g Training
Leaky ReLU | 98.7 98.7 g 300
PRelLU 85.7 78.1 200 = =®= = Testing
ELU 105.6 111.7
100
Sigmoid 516.3 517.0
0
Tanh 517.5 518.1 Linear RelLU Leaky PRelLU ELU Sigmoid Tanh
RelLU
Table 16: Performance of different Optimiser
activation functions for hidden layers . . . - .
after 40 epochs Figure 55: Testing and training loss (MSE) after 40 epochs for hidden layer

activation functions

The linear activation function performed the best. Nevertheless, it can be detrimental to use only linear
activation functions when training a deep neural network. This is because the model could not learn a non-linear
representation of the data and so may overlook the underlying trend [83] which could be a problem when
training the autoencoder on a different dataset. Therefore, in the following test, the number of epochs has been
increased to 100 to see if the non-linear functions can match linear performance after longer training.

For an autoencoder outputting real numbers, it is sometimes suggested to use a non-linear activation function
only in encoder layers [84]. Consequently, | have experimented using the non-linear activation function PReLU
for the encoder, and either linear or non-linear for the decoder as shown in Table 17.

PReLU was selected for the encoder as it achieved the lowest testing and training loss of the non-linear
functions. Additionally, percentage test accuracy is included to compare the percentage of gene counts
successfully reconstructed and print screens of input tensors and decoded results are available in Appendix B.

Encoder Activation = Decoder Activation = Train Test Test
Function Function MSE MSE Accuracy
PReLU PReLU 47.2 72.5 35.7%
PReLU Linear 55.3 68.2 38.8%
PReLU Leaky ReLU 51.3 74.2 32.2%
Linear Linear 56.0 66.7 38.3%

Table 17: Performance of combinations of activation functions after 100 epochs

PReLU + Linear achieved the highest test |
accuracy, although its values are not significantly

different to Linear + Linear. Training loss, plotted @ PReLU+ PRelU

in Figure 56, shows that Linear + Linear performs | | PReLU + Linear
best with a low number of epochs, such as 40, as @ PReLU + Leaky ReLU
also demonstrated in the previous experiment. 120

However, increasing the epochs causes the @ Linear + Linear
Linear + Linear loss to rise while the non-linear 100

models’ loss decrease.

80

6.2.6.1 Conclusion 60
As using PReLU for the encoder and linear 40
activation for the decoder had the best accuracy 10 20 30 10 50 70 8 o0 o

and a good performance over a high number of
epochs, they have been selected for the
autoencoder.

Figure 56: Training loss (MSE) after 40 epochs for combinations of
activation functions

6.2.7 Number of Epochs

To determine a number that reduces 180
underfitting or overfitting, the autoencoder was @ validation
trained over 400 epochs (Figure 57). Training
and validation loss both steadily decrease
between 0 to 135 epochs. Then training loss 120
continues to improve with further epochs, while ..,
validation loss remains consistent until 340

epochs. After this point, the model overfits.

@ Training

0 50 100 150 200 250 300 350

6.2.7.1 Conclusion Figure 57: Training and validation loss (MSE) after 400 epochs

As performance does not significantly improve beyond 135 epochs, and since the lowest validation loss was
65.6 after 222 epochs, | have selected 250 as the maximum number of epochs. This should allow the validation
loss to reach a minimum, prevent the model overfitting and ensure training time is reasonable. Note that as a
maximum, this number may not be reached when training the final model due to early stopping.

6.2.8 Summary of Autoencoder Optimisation
The autoencoder has been optimised for the benchmarking dataset. The following changes were made:

¢ The optimiser was set as the AMSGrad variant of Adam with learning rate 1e-3.

¢ Batch size was set to 4.

¢ The network architecture remains the same as in the design consisting of an input layer, a hidden layer
either side of the encoding layer and an output layer.

¢ The first activation function of the hidden layer has been set as PReLU, while the second is linear.

¢ The maximum number of epochs is set as 250.

6.3 Training the Optimised Network

After optimising the autoencoder’s structure and hyperparameters, it was trained on the benchmarking data and
the weights saved to file. The training of autoencoders for the simulated and mouse cortex evaluation data is
also documented in this section, although they were not trained until after thoroughly testing the benchmarking
dataset. These saved models can be reloaded and provide the encodings used to perform clustering.

6.3.1 K-Fold Cross Validation

In the tests above, samples were randomly split into testing, training, and validation. However, k-fold cross
validation can be used to find a better split. Therefore, data set aside for training was split into 5 folds and
trained for 20 epochs. Validation loss for both datasets is recorded in Table 18 and print screens provided in
Appendix B. The best fold for each has been highlighted red. Note that loss between each dataset cannot be
compared as they have different numbers of training samples and genes.

Validation Loss (MSE)

Fold | Benchmark Simulated Mouse Cortex

0 79.9 99.7 234
1 104.2 96.6 25.7
2 83.5 105.4 24.8
3 101.4 105.7 29.3
4 103.5 108.1 29.3

Table 18: 5-fold validation loss for benchmarking, simulated and mouse cortex evaluation data

51

52

6.3.1.1 Conclusion

For both the benchmarking and mouse cortex datasets, fold O achieved the lowest validation loss so these splits
were selected respectively. For the simulated data, fold 1 was selected.

6.3.2 Training, Validation and Testing Results
6.3.2.1 Training and Validation

For each dataset, an autoencoder was trained over 250 epochs and the weights saved to file.

Benchmarking Data

As seen in Figure 58, the lowest validation loss of the first autoencoder was 56.9. As this was achieved after 247
epochs, the model was saved at this state.

200
@ Training loss
180

@ Validation loss

120

100

80

0 20 0 60 &0 10 120 140 180 180 200 220 240

Figure 58: Benchmarking data autoencoder’s training and validation loss over 250 epochs

Simulated Data

A second autoencoder (Figure 59) was trained reaching the best validation loss of 81.2 after 228 epochs.

Training loss

125 Validation loss

80

0 20 a0 60 30 10 120 140 160 180 200 220 240

Figure 59: Simulated data autoencoder’s training and validation loss over 250 epochs

Mouse Cortex Data

The final autoencoder’s state was saved after 185 epochs when reaching the best validation loss of 16.0. See
Figure 60.

53

Training loss

- \h @ Validation loss

20

|

Figure 60: Mouse cortex data autoencoder’s training and validation loss over 250 epochs

6.3.2.2 Testing

The benchmarking autoencoder was tested against 150 unseen samples, while the simulated and mouse cortex
autoencoders were tested against 500. The average test loss of mini-batches in each are plotted in Figure 61. As
batch size is set to 4, the benchmarking has a total of 38 mini-batches, while the others have 125 as reflected in
the graphs below.

0 5 10 15 2 05 20 35 - - P o e, - - (20 A0 60 a0 100
20 25 (20 60 80 00 20

Figure 61: Average loss (MSE) per mini-batch during testing of benchmarking data autoencoder (left), simulated (middle) and mouse
cortex right)

Benchmarking Data

Overall, testing had an average loss of 65.2 and accuracy of 39.9%, in which accuracy is the percentage of gene
counts correctly reconstructed. A screen shot can be seen in Appendix B.

Simulated Data

The second autoencoder had a loss of 87.8 and the lowest accuracy of 36%. Therefore, the autoencoder does
not capture the features of this dataset as well as the other models.

Mouse Cortex Evaluation Data

This model achieved an average loss of 17.7 and the highest accuracy of 50.3% meaning the autoencoder was
the best at preserving the structure of this dataset.

6.3.2.3 Conclusion

The final model for the benchmarking data achieved a marginally higher test accuracy than any of the
optimisation experiments. Interestingly, even though the hyperparameters were tuned for the benchmarking
autoencoder, the accuracy of the mouse cortex autoencoder was higher. However, this is likely because this
dataset has 1072 genes while the other two have 16468 making it a lot easier for the autoencoder to retain the
original features.

54

After the models were trained, they were saved to file. This means they can be loaded again and will produce
the same test accuracy when given the same samples.

6.4 Clustering

As the autoencoders have now been trained, k-means and agglomerative hierarchical clustering are applied to
both the encoded and original data and the performance evaluated as explained in objective 5. Though most
experiments were first tested on the benchmarking data, testing of the other datasets has been included
alongside so that results can be compared.

Some of the graphs are marked with “Clickable” as they include hyperlinks to interactive versions. It is worth
pointing out that some experiments refer to using the data without standardization. By this | mean that it has
not been applied before dimensionality reduction, such as PCA, as standardization has been consistently used on
the extracted components. Refer to Clustering in System Design for further clarification.

6.4.1 Ground Truth of Data

The cell lines and group metadata for each dataset form clusters that can be compared against those obtained
through experiments later in this report. This ground truth enables the calculation of accuracy and ARI.
Therefore, the purpose of this section is to explore the target clusters of each dataset.

6.4.1.1 Benchmarking Data

Each cell belongs to one of three cell lines: H1975,

H2228, HCC827. In Figure 62, the cell lines of all 902 .

cells are plotted against the first two principal 3 o @ H1975
components as transparent squares, while the 150 , o’ A

samples selected for testing are plotted as coloured o : S0 g e 93 ® H2228
dots. Figure 63 illustrates the testing samples against ‘ 3 ’-3“;',?;3“ . “‘ @ Hccs27

the top three components. This is because the initial o
experiments during this section were tested on the
training data of the autoencoder, while later
experiments were conducted on all samples.

; 2 o 2 o
2 I d ?
t 5 P ° o O
‘ ! o ; g -1’;‘
z © :o'.. ~ ° 0!i®

e
£} . o, o' 5 ° o v
43) 0 ° &
2 % 4 =
1 5 5] e ?
y 3 8 y
0 2 3 > » 3
4 - IS)
4% 0 % N i e = > A ° ~ 4
2 g y X

Figure 63: (Clickable) 3D plot of benchmark testing data’s cell lines from three angles

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/sc_10x_cell_lines_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/sc_10x_cell_lines_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/sc_10x_cell_lines_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/sc_10x_cell_lines_2D.html

55

6.4.1.2 Simulated Data

The simulated cells contains one more cluster

than the benchmarking data as cells are divided

into four groups: Group1, Group2, Group3,

. In addition, 500 samples were selected

rather than 150. Refer to Figure 64 and Figure
66.

PC1

@ Groupl
® Group2
@ Group3

Group4

Figure 66: 3D plot of simulated test data’s groups from three angles

6.4.1.3 Mouse Cortex Data

The mouse cortex dataset is far more
complicated than the previous two both as
cells have been divided into seven groups
and the differences in gene expression are
far more subtle. In addition, these groups
were found using the BackSPIN algorithm,
and so they are likely to be less reliable
than the other two datasets. See Figure 65
and Figure 67.

PC1

PCO

Figure 67: (Clickable) 3D plot of mouse cortex test data’s expected groups from three angles

@ astrocytes_ependymal
endothelial-mural
interneurons

@ microglia
oligodendrocytes

@ pyramidal CA1

@ pyramidal SS

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/splat_groups_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/splat_groups_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/splat_groups_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/cortex_groups_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/cortex_groups_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/cortex_groups_3D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/splat_groups_2D.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Target_Groups/cortex_groups_2D.html

6.4.2 K-Means

The optimised autoencoders were loaded and encodings obtained for the test samples of each dataset. These
are samples that were not used to train the autoencoder. This allows evaluation of the autoencoder’s ability to
generalise which is useful because some scRNA-seq datasets do not provide a label for every cell.

Before applying clustering, the elbow method and silhouette coefficient were run to find the best suggestions
for k. Then k-means was applied to both the encoded and raw unencoded data and the results compared.

6.4.2.1 Benchmarking Data
Finding the Best K

For the encoded benchmarking data, the elbow method suggested three clusters while the silhouette coefficient
suggested five (Figure 68). | decided upon three clusters as this matches the expected number of clusters.

K-Means Elbow Method K-Means Silhouette Coefficient
2400 4
027
2200 - \
2000 o 026 _ \,___
o
= A\,
1800 £ p25 \
i S N
1600
o £ 024
o \
1400 3
= 023 \
1200 (e \
1000 022 \/
2 4 6 8 10 2 3 4 5 6 7 8 9 10
Number of Clusters Number of Clusters

Figure 68: Elbow method (left) and silhouette coefficient (right) for benchmarking data

K-Means on Encoded Data with PCA

For the first experiment, k-means was applied to the first two principal components of the encoded
benchmarking data. The first graph in Figure 69 shows clusters predicted by k-means and the second shows the
expected clusters based upon cell lines. Figure 70 reveals which cells were not assigned to correct clusters by
highlighting them in red.

This resulted in an accuracy of 68.7% as k-means was not able to assign the correct cluster to 47 out of 150
cells. The ARl was 0.396 which is lower than the average of the benchmarking metadata (0.396 < 0.436). It is
apparent that this set up did not perform well at identifying the cell lines as the shape of the left-most predicted
clusters clearly do not match those of the actual clusters. One reason for this issue is because cell lines H1975
and H2228 overlap in the two-dimensional space.

- 1 - 1 - . .
. L]
£ ¢ 2 AT N
. .‘-.‘ . °
.
J oo e . . S e, . . .
.
wmd® L' . we L T Y . . s, .
fige 4% . ige g% .,
& 4 . o FRAE i A . o o
1 . ® D 1 . ® . e%° * @
- . . N © . L .
. - % . « %
.
.
2 2
1 0 1 1 0 1 2
PCO PC O

Figure 69: (Clickable) K-means prediction (top left), actual clusters (top right) for 2 PC encoded benchmarking data

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_E_68.7%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_E_68.7%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_E_68.7%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_E_68.7%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_E_68.7%25

57

PC1
.

Figure 70: (Clickable) K-means prediction (top left), actual clusters (top right) and difference (bottom) for 2 PC encoded
benchmarking data

To solve this problem, standardization was applied to the encoded data both before and after applying PCA with
2 components (Figure 71). This separated the cell lines and as a result, accuracy increased to 97.3%. This meant
that now only 4 out of the 150 cells were incorrectly identified. The new ARl is 0.920 suggesting that this
experiment has outperformed the best result in the metadata experiments (0.959 > 0.742).

PC1
.
.
.
PC1

PCO

Figure 71: (Clickable) K-means prediction (top
left), actual clusters (top right) and difference
, (bottom) for 2 PC pre-standardized encoded
benchmarking data

PCO

When a third principal component was included to cluster the pre-standardized encoded data, accuracy
increased to 98.0% and ARI to 0.940 (Figure 73). However, | discovered using three PCs on the unstandardized
data was even better with 98.7% accuracy and ARI of 0.959 (Figure 79) suggesting that standardization may not
always improve accuracy.

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_E_68.7%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_SE_97.3%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_SE_97.3%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_SE_97.3%25

58

L ®
3 ® ° 3 [} ° 3
®
- yuEingee ; JUESEg: z
z @
' a se ® 1 e o0 2y
[]
Q0 i 0 ° [0 °
o L) s .
2 ® 2 < g ° £
SN o o <> A o e e By e ~2
= ~7 [g [~
¥ :° vty 1 x y ¥ i° x
Y. 3 X 2
3 2 3 2 . 2

Figure 72: (Clickable) K-means prediction (left), actual clusters (middle) and difference (right) for 3 PC encoded benchmarking data

with standardization

°
°
2 2 "Q 2
°
°
1 . : . ¥ i
> ° @
W 4 L2 1 1 * -1 °
®
~ e ® " ® o o° &
-2 ° e ® o ® ® o0 .
'\0 [] “0 ©) 1
8 1 . y 2
1 ~0,51 Y ~0.51 2 070.51
y) : 050 5 2 5 1}510.50 .5 3 21‘51 05
3 253 -5 X ?.52 X 2-5

Figure 73: (Clickable) K-means prediction (left), actual clusters (middle) and difference (right) for 3 PC encoded benchmarking data
without standardization

Although the improvement is not large, the experiment demonstrated that adding another principal component
was an effective method to increase accuracy. To see if | could improve it any further, | tried using different
number of principal components and recorded the average accuracy over 5 iterations of k-means.

The results suggest that the optimal number of principal components for the unstandardized data is 4 (Figure
93), while for the standardized data it is 7, with both attaining a near perfect 99.3% accuracy and 0.980 ARI.
Although k-means was run on higher dimensional data, clusters have been plotted against the top two principal
components in the graphs below. Unfortunately, neither version was able to correctly classify CELL_000061.

Best Number of Principal Components
100 4 e
[. 3
0.95 |I
| \ 1
| \ / \ X 2 W (02176501, 1.852744) LlUEEAES
0.90 4 | ~\
| \ f
= | \ \ -
Boss{ | / o
5 | \ / \
Q | \/ \
0so{ | ! 0
|
|
0754 |)
|
|
0704 |
-2
T T T T T T T T T T T T T T T 1 0 1 2
2 3 4 5 6 7 B 9 1011 12 13 14 15 15
PCO

Number of Principal Components

Figure 74: K-means accuracy for unstandardized encoded data when testing different numbers of principal components (left) and a
plot showing the incorrectly identified cell for 4 PCs (right) (Clickable)

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_SE_98%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_SE_98%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_SE_98%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_E_98.7%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_E_98.7%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_E_98.7%25
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_4_PCA_E_99.3%25.html

59

PC1

Best Number of Principal Components

100 4

HAccuracy
PC 1

(-0.2611393, -0.2136695) |MICIELEE]
CELL_000061, HCC827

2 03 4 5 6 7 8B 9 10 11 12 13 14 15 16 - o
Number of Principal Components

Figure 75: K-means accuracy for standardized encoded data when testing different numbers of principal components (left) and a 2D
plot showing the incorrectly identified cell for 7 PCs (right) (Clickable)

K-Means on Unencoded Data with PCA

The accuracy when using the encoded data is very good. However, to evaluate if using the autoencoder has
improved performance, the experiments must be repeated on the unencoded data.

PCA was run on the unencoded data both with and without applying standardization. Again, the top two
principal components were selected on which k-means was applied. The unstandardized data, shown by the left-
most graphs in Figure 76 and Figure 77, got a low accuracy of 64% and ARI of 0.387. When standardization was
applied, seen by the right-most graphs, this received a higher accuracy to 72.7% and ARI of 0.546. However, in
both cases, the cell lines overlap in the 2D space preventing k-means from distinguishing the two. As these

results are worse than when run on encoded data, this implies in this case that the autoencoder was successful
at condensing important features into a lower dimensional space.

25
2
, 15
- . . - 1
g o 2
0.5 .
.
.
0 :.'-.‘: % . . -- 0 - .c
o O . -, . N ° .o
o e .
-‘3‘"-‘_- . 3 05 -, . :
.
B ¢ LI '. . . gh q‘:‘l... “
N P X7 A
. -1 .oo. .
-2
I 5 T > —1 [} 1 2 3
PCO pco
4 . .
2.5 .
™ .
. 5 . . el
. . -
.o
5 N 1 e, . .
L] -
. . 1 L]
. - .
1 o HEd o * * . o) - °
.. ., se -4 . - .
e o 2 . 0.5 P .
. H ¢
0 -...‘: L . . . 0 o - .
. c " = . * . .
T . .
A ¥ ot . out e’
| ope B s 0.5 -, .
8,00 o ° . .sb*-l"“
. e . . . L] o) _ﬁ‘. .
. : " ..-' .
_2 .
1 0 1 F] 1 0 1

Figure 76: (Clickable) K-means using 2 PCs from the raw unencoded data (left) and standardized unencoded data (right)

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_7_PCA_SE_99.3%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_U_64%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_SU_72.7%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_U_64%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_SU_72.7%25.html

. L
- H . -
& ! or Tupee " ¥
.o o °& 0.5
23%8 0
0 Sop o)
.’ .
et
.
-1 1 0.5 l..l .
. e Bo S *
. o, W50 %« .
. -1 .
2 .
1 2 3 -1 0 1 2 3
PCO

PCO

Figure 77: (Clickable) Incorrectly identified cells from k-means using 2 PCs for the raw unencoded data (left) and standardized

unencoded data (right)
For both the raw and standardized unencoded data, the best number of principal components was three (Figure
78). Without standardization, accuracy was 99.3% and ARI 0.98 (Figure 79). While with standardization, 100%

of the cells were correctly identified giving a perfect ARl of 1 (Figure 80).

Best Number of Principal Components

Best Number of Principal Components
104 10 A *'_\/_‘\
f "'-,
| \
0.9+ 0.9 |I \
. 9 4 | \
I Lﬂ_\
| W
= & |
@ 08 @ | \
g0 Cosq |
2 2 |
E £ | "
I
07 07 4 \ If\
0.6 1 06 1 l\\\-'
—— T —— T
9 1011 17 13 14 15 16 17 18 19 20 234 56 7 B 9101112131415 16 17 1819 20
Mumber of Principal Components

T
2 345678
MNumber of Principal Components

Figure 78: Comparing accuracy to number of principal components for k-means on the raw unencoded data (left) and standardized

unencoded data (right)

 EEMCGERRE [uncRem

-1

2 A

2 -1 T 4 0 o
0 o ’ 5

N % 5 x

1 2 y

&

X ¥ a
B 3

Figure 79: (Clickable) K-means prediction (left), actual clusters (middle) and difference (right) for 3 PC original benchmarking data

3 3 8
[}
2 2 e O
> e ¥ £ &
[} z L]
E ' & &
o e 0
L) Y °
(] . ¢ L]
° L])
N .:' 2 1555 = .o..
- 0
° N :sl y % 1 1,522'5
- 2 0.57
x 2 05 4 <50 y
~; -5
7

. .

Figure 80: (Clickable) K-means prediction (left) and actual clusters (right) for 3 PC original benchmarking data with standardization

60

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_U_64%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_2_PCA_SU_72.7%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_SU_99.3%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_SU_99.3%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_SU_99.3%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_U_100%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Benchmarking_Data/sc_10x_k-means_3_PCA_U_100%25.html

61

Conclusion

The results on the unencoded using three principal components are marginally better than when encoding was
applied. This means that when applying k-means to this dataset, the autoencoder’s encoding did not improve
performance. However, as these experiments are limited to just 150 samples it is hard to say if the difference is
statistically significant. A table of results directly comparing the experiments is available in Appendix B.

6.4.2.2 Simulated Data
Finding the Best K

For the simulated data, both the elbow method and silhouette coefficient predicted four clusters which matches

the true cluster number. See Figure 81.

K-Means Elbow Method

8000

7000
w 6000
=

5000

*
4000
2 4 6 B bl

Number of Clusters

Silhouette Coefficient

028

026

024

022

020

018

016

014

K-Means Silhouette Coefficient

MNumber of Clusters

Figure 81: Elbow method (left) and silhouette coefficient (right) for simulated data

K-Means on 2 Principal Components

For both the encoded and unencoded data when no standardization was applied on two principal components,
the performance was poor with 49.8% (Figure 82) and 48.8% (Figure 83) accuracy respectively. Despite the
encoding having a slightly higher accuracy, it had a lower ARl of 0.167 compared to 0.171. This means that
while the encoding was able to match more cells to their group, samples present in the clusters were less similar.
Nevertheless, this difference is hard to detect in the graphs below.

PC1

PCO

PC1

Figure 82: (Clickable) 2 PC k-means on the encoded simulated data without standardization

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_2_PCA_E_49.8%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_2_PCA_E_49.8%25.html

62

- V3N L te 30 .
. () . o
-’:'.':.l.' * 1 .b. s *
1 sale .‘0 L] . . .
- * -
(9] e‘ .. . g . ‘ . e ® '.
& 28 o gl L . 0 o .r'--., ~.’ e L
0 . ¢ %
.. _-s-. f}f oo § Lo = - 1 54 38 « .
ATRY . ".it'g
- .
1 . E - ; ..=‘ s Ag 2 e-’ i
« o o - * e ® 0\' LIS
o e . e30,% o
. . ..
-2 . 2 * et
.
.
3
-2 -1] 1 2 3 4 -2 1 0 1 2
PCO PCO

Figure 83: (Clickable) 2 PC k-means on the unencoded simulated data without standardization

Like with the benchmarking dataset, the accuracy after applying standardization with two principal components
was significantly increased to 92.4% for encoded (Figure 84) but just 53.4% for unencoding (Figure 85). On
inspection of the graphs, it is easy to see why as standardization was able to separate the encoded cells into
distinct groups with only a small amount of overlap, while without encoding, Group2, Group3 and are
placed on top of one another and only Group1 is distinct.

3

< .
; .-.1‘}‘”. -;;.\ .- . ;) S
9] 0 < o ¥ . [¢) 0
& oo " 2. ° a o -
e o .# 3-. . o2
g . S @ o6
1 .z\-vol- =i 1 :
‘ ifl";\“” :
.
i e’ . .
2 R : 2
X
B
-3
=2 1 0 1 2 -2 -1 0 1 2
PCO PCO

Figure 84: (Clickable) Predicted clusters (left) and incorrect cells (right) for k-means using 2 PCs on the encoded simulated data

:
2&.
>
<
<L
'
fo.
»
*
&

Figure 85: (Clickable) Predicted clusters (left) and expected groups (right) for k-means using 2 PCs on the unencoded simulated data

K-Means on Optimal Number of Principal Components

When the number of principal components was optimised, three out of four experiments received 100%
accuracy and ARI of 1.0. For the encoded data, this result was achieved using nine principal components with
standardization and six without (see Figure 86). For the unencoded data, 19 principal components were required
on the unstandardized data, while with standardization, the best result was 88.4% accuracy and 0.897 ARl on 5
principal components.

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_2_PCA_U_48.8%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_2_PCA_U_48.8%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_2_PCA_SE_92.4%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_2_PCA_SE_92.4%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_2_PCA_SU_53.4%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_2_PCA_SU_53.4%25.html

63

n.
2 2
Y
1 ® o © o ©
z hn [] z
° Lolnd”
2
3
2 5
2 1 1
2 0 Vi 0 y
o o S ~1 =7
=2 Ad ~2
X * ” X ks %

Figure 86: (Clickable) 3D plot of predicted clusters (left) expected groups (right) for k-means using 6 PCs on encoded simulated data

Summary of K-Means on Simulated Data

K-means was applied to the first two principal components of the testing data both with and without applying
encoding and standardization. Then this was repeated using the optimum principal components. Three of these
experiments correctly identified all 500 of the cells, although when encoding was used, far fewer principal
components were required. Therefore, for this dataset the autoencoder’s encoding appears to have been
beneficial as using fewer PCs reduces computational complexity. The full table of results can be seen in
Appendix B.

6.4.2.3 Mouse Cortex Data
Finding the Best K

For the mouse cortex data, the elbow method’s recommendation was 4 while the silhouette coefficient’s was 2
(Figure 87). Neither of these reflect the expected number of clusters which is 7. However, | selected 7 anyway
so that | could compare the clusters to the BackSPIN predicted labels.

K-Means Elbow Method K-Means Silhouette Coefficient

045

8000 T %

7000

6000

SSE

5000

3000

4 6
Number of Clusters

10

Silhouette Coefficient

040

035

030

025

0.20

015

4 5 & 7
Number of Clusters

Figure 87: Elbow method (left) and silhouette coefficient (right) for mouse cortex data

K-Means on 2 Principal Components

When the encoded data was run on two principal components without standardization, accuracy was 29.2% for
the encoded version and 29.8% without (see Figure 88). Both results are poor, though this is not surprising
when trying to predict the target clusters as they are not separated enough for k-means to work effectively.

Applying standardization did not improve the performance for the encoded data as accuracy was even lower at
25.4%. However, accuracy did increase for the unencoded data to 36.6% (Figure 89). Though this is a good

improvement, it is clear to see that the cells still overlap too much to be reliably clustered.

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_6_PCA_E_100%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Simulated_Data/splat_k-means_6_PCA_E_100%25.html

64

5 5
.
4 4 .
. .
. ° . .
. o ‘.. -.n '-.
. L]
. ® % LY L %)
2. % . 2 e %
T A R - A
.
g LA SR . -4 s el e, *
. . . s .ool"... . .
. .
’ EE T A
. . L " - . .
"..o . . - _l“..: ‘ov . . -
¢ “."' o g St Ve a, e
o ey . A SN P T .
'!f.. * . . ® . it’ ,:‘. ,."_.o' e .
on, H o e o
-1 1 £ | VRIS, o
L] - L]

1 o 1 2 3 4 5 6 1 0 1 2 3 4 5 6

PC1

PC1
‘.-

*
£
@af e
» .
.
&
* .
"

Figure 89: (Clickable) 2 PC k-means on the unencoded mouse cortex data after standardization

K-Means on Optimal Number of Principal Components

The standardized encoded data achieved the best accuracy of 36.4% with 15 principal components (Figure 90).
Nevertheless, this is still worse than using two principal components on the standardized unencoded data.

Best Number of Components .
4 L]
0.34 1 *(\ .
/N
/ - FAA
- J \
\ / ..
0.32 1 \ /
~ \ J 2
oy — \ \/ o
€o30{ | / \ / \/ L
E II A) . - N
028 | Vv ’ ¥
|II -1
/
0261 |
: -2
T T T

T T T T T
2 3 4 5 6 7 B8 % 10 11 12 13 14 15 16 0 2
Number of Components

Figure 90: Finding the best number of principal components (left), and k-means predictions on the encoded mouse cortex data with
standardization for 15 PCs (Clickable)

K-Means and t-SNE

As k-means does not work well when clusters are not well separated, a new approach is needed. As briefly
mentioned during the Literature Review, t-SNE is a technique that can find structure where other dimensionality
reduction techniques fail [85]. Therefore, | tried applying t-SNE after dimensionality reduction with PCA. Again,
different combinations of principal components were tested with the best result being the standardized,
unencoded data with 33.2% accuracy (Figure 91). Unfortunately, this result was lower than without t-SNE.
However, this technique does make it much clearer to view the cells in a lower dimension.

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_2_PCA_U_29.8%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_2_PCA_U_29.8%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_2_PCA_SU_36.6%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_2_PCA_SU_36.6%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_15_PCA_SE_36.4%25.html

65

2 o 2
[
..- p P
1.5 v, e o 15
o .e
PO T
.
I oeoilesipe s ., !
e >
0.5 * g8 N * “ . 0.5 .
.
Ot R .
- . - * e
0 0 . I DL R YO v ’ .
o . ." [e) . .
. .
0 L RIS TP o i
. °"c.‘..‘-:,‘ :-‘ .
- . -1
' : %’:.\0“.-' ° A2
el L. . .
D11 -
-1.5 \ '-..;‘. 1.5
o
e gr ® 2
2 . .l.
-2 -1 0 2 -2 -1 0 1 2
PCO Pco

Figure 91: (Clickable) K-means predictions on the standardized, unencoded mouse cortex data with 16 principal components and t-
SNE with perplexity 30

The most important parameter to tune for t-SNE is perplexity, which by default is set as 30. Decreasing this
parameter will lead to fragmentation caused by local variation, while increasing it beyond the number of cells
causes unanticipated behaviour [85] as demonstrated in Figure 92.

’ *

ot 5
13 St e 30 i v eyl g,
ok L by & o0 1 _'“':g.:::_; .
& . L ' LI
}ﬁ"’ *-" . w2 it e
I 14 ‘-.‘?l‘ . ‘,:-"I' ° o ','”..' "'-
” & =g v ot gl
. N . '}:'5 A . n o S N
g \ N g o shiscd v L. g - L
Leali "' v ~,.
P o5 i ol 1-;:4_.
|
1 ¥,
) ;_33.- '..?l-?' . s
s o
, -fHQ
i

- Nl e
... .
. | H
A : .
. - .
g .s
- * fese” -~ Lo - '] -
¥ . Rt ¥ H N
S e .
s . N
-~ ou s on .
. LR L
. . - % .
e, obe
. oo, e

PCO PCO PCO

Figure 92: (Clickable) K-means on the standardized, unencoded mouse cortex data with 16 principal components and t-SNE
perplexity 5, 10, 20 (top) and 50, 300, 600 (lower)

Summary of K-Means on Mouse Cortex Data

K-means did not work well on this dataset as the cells are not separated enough. Applying t-SNE helped prevent
the cells overlapping as much in the two-dimensional space and the best result overall was when using t-SNE
with perplexity 300 achieving 37% accuracy. However, t-SNE is highly variable when run multiple times and
accuracy is low meaning it was unable to replicate the BackSPIN labels. See Appendix B for the full table of
results.

6.4.3 Agglomerative Hierarchical Clustering

Now a second clustering algorithm, agglomerative hierarchical clustering is applied to see how the results
compare to k-means. These experiments have not been documented as thoroughly, but full tables of results can
be found in Appendix B.

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_16_PCA_SU_t-SNE_33.2%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_16_PCA_SU_t-SNE_33.2%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_t-SNE_perplexity%3D50.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_t-SNE_perplexity%3D600.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_t-SNE_perplexity%3D5.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_t-SNE_perplexity%3D10.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_t-SNE_perplexity%3D300.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/K-Means/Real_Evaluation_Data/cortex_k-means_t-SNE_perplexity%3D20.html

66

6.4.3.1 Benchmarking Data

Dendrogram

To find the recommended number of clusters, a dendrogram was plotted and the number determined using the
method explained in the Literature Review. For the benchmarking data, this was three as represented by the

dashed line on Figure 93.

304

25 1

204

Distance

104

TR IR R R T B

FRPRSE & = TE A R EFS ER5 o e

Figure 93: Dendrogram for benchmarking data agglomerative hierarchical clustering

Hierarchical Clustering with PCA

PCA was run on both the encoded and uncoded data, with and without applying standardized. The best result
reached 100% accuracy through applying standardization to the unencoded data with 3 principal components
(Figure 98). This is the same combination that achieved the best performance when using k-means.

3 3
2 2 o @ .
b L 2] : N >3
: » z »
0 Q
° e
K .0‘ ® =2 N L]
“00 [L]
... .,.. :... .'..
2% 3 Py 25 -3 o ° 2.5
3 0 zjf v 0 11'9)
X 2 05 x) o
&) %5 Y 3 %5 Y

Figure 94: (Clickable) Hierarchical clustering prediction (left) and actual clusters (right) for 3 PC standardized unencoded
benchmarking data

The highest accuracy on the encoded data was 99.3% with 2 principal components when applying
standardization (Figure 95). Again, like in the k-means experiments, the encoding was unable to identify
CELL_000061. This could reflect a limitation of the autoencoder as perhaps it was not able to capture this cell’s
gene expression. However, this is the best result so far using only 2 principal components for this dataset.

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Benchmarking_Data/sc_10x_hierarchical_3_PCA_SU_100%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Benchmarking_Data/sc_10x_hierarchical_3_PCA_SU_100%25.html

PC1

PC1

(-0.2611393, -0 2136695) fullE=hle]
CELL_000061, HCC827

PCO

Figure 95: (Clickable) Hierarchical clustering prediction (left) and incorrect cell (right) for 2 PC standardized encoded benchmarking
data

6.4.3.2 Simulated Data

Dendrogram

For the simulated data, the dendrogram dataset correctly predicted four as the number of clusters, as
demonstrated by the dotted line on Figure 96.

50

Distance
8
il |

204

10

0

Figure 96: Dendrogram for simulated data agglomerative hierarchical clustering

Hierarchical Clustering with PCA

The top result for hierarchical clustering on the simulated data was 99.8% with ARI 0.996. This was achieved
both when using 6 principal components on the encoded data (Figure 97) and 9 with standardization. These
combinations are the same as the best results in the k-means experiments, though performance is slightly worse.

N
-
<°,
< .. S .-. o) . 2
. 4 b L] . .
1 ® A .014. . & 1
.
~3aftt D P
e) . R Y -
X TR+ ik D
s e o o7 v . ®e $o0 ° *® . S
“.‘.‘. d 95 &
. o .
1 9 o X N s <! W (1169503, ~1.101578) S
. Cell184, Group3
. .
2 -
-3 -3
2 1 0 1 2 2 1 0 1 2
PCO PCO

Figure 97: (Clickable) Hierarchical clustering prediction (left) and incorrect cell (right) for 6 PC encoded benchmarking data

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Benchmarking_Data/sc_10x_hierarchical_2_PCA_SE_99.3%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Benchmarking_Data/sc_10x_hierarchical_2_PCA_SE_99.3%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Simulated_Data/splat_hierarchical_6_PCA_E_99.8%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Simulated_Data/splat_hierarchical_6_PCA_E_99.8%25.html

68

6.4.3.3 Mouse Cortex Data

Dendrogram

The dendrogram implies that two is the best number of clusters. However, | again set the number as seven to
compare against the BackSPIN labels.

Dendrogram
70

60

50

&

Distance

w
o
L

204

104

Figure 98: Dendrogram for mouse cortex data agglomerative hierarchical clustering

o4

Hierarchical Clustering with PCA

Hierarchical clustering outperformed k-means achieving the highest so far accuracy at 44.4%. This was attained
twice on the unencoded data using 9 principal components with standardization (Figure 99) and 15 without.
Although it could be concluded that hierarchical clustering is therefore better suited to this type of dataset, it is

hard to determine without a reliable ground truth as it is possible this is reflecting that the BackSPIN algorithm is
more closely related to hierarchical clustering than a partitional algorithm such as k-means.

6 6 6
4 L] a [4 ..o
° °
2 =. 2 »° 2 ..0
5 » 0% @ o S *
o 4 0 [’ z
pos z [A=)":s‘
-2 ° -2 e ° -2 ~
° 3 D -
-4 ° °® o A ® °0, -4 °
-6 L] ° 6 o d k=) ° -6
8 8 %
a Oy A
s 9 2 ° LI °
0
Y 2 345 Y 2 a5 ¥ -2 f:"
A 2 _a EXd o 2
6 0? X o o? 6 0? x
~7 ~z X ~

Figure 99: (Clickable) Hierarchical clustering prediction (left) actual clusters (middle) and incorrect predictions (right) for 9 PC
standardized unencoded mouse cortex data

6.4.4 Visualising PCA Gene Expression

As PCA can be applied directly to the gene counts, | thought it would be interesting to view the contribution of
each gene to the principal components for each dataset.

6.4.4.1 Benchmarking Data

To do this I calculated the eigenvectors of the top 20 principal components. These are one-dimensional vectors
consisting of loading scores between -1 to 1 for each gene. A value of O signifies that a gene does not contribute
to the component, while a high absolute value such as |0.9| or |-0.9| indicate a large contribution [86]. The first
20 loading scores were then plotted against their corresponding genes as demonstrated in Figure 100.

This revealed that when using PCA on the raw data, most genes contribute very little to each principal
component. | hypothesis this is because most genes do not provide significant variation compared to those with
high expression. Interestingly after applying standardization, the gene contribution of each component was far

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Real_Evaluation_Data/cortex_hierarchical_9_PCA_SU_44%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Real_Evaluation_Data/cortex_hierarchical_9_PCA_SU_44%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Hierarchical_Clustering/Real_Evaluation_Data/cortex_hierarchical_9_PCA_SU_44%25.html

more evenly distributed. This may play a part in why standardization generally improves performance as the
variation within the data is enhanced.

Contribution of Genes to Principal Components Contribution of Genes to Principal Components

Principal Component
Principal Component

§ 8§ 5288888 5 8§ 8 88 88¢8¢8€¢e¢&

£ 8 8 8 8 8 8B 8 8 8 8 8 8 &8 8 8 8 8 B 8

Figure 100: Loading scores for the top 20 principal components against 20 genes for the unstandardized (left) and standardized
(right) benchmarking data

The top three principal components account for 67.2% of the variation of the original gene counts, each
capturing 41.2%, 15.9% and 10.1% respectively. To find which genes have the greatest influence, | calculated
the absolute values of the loading scores for these components. Ordering them from highest to lowest revealed
that ENSG00000132432, a gene known as SEC61G that encodes a subunit protein for polypeptide transport
across the endoplasmic reticulum [87], had the largest scores for all three. This suggests that expression of this
gene is a useful marker for genetic variation between cells in this dataset.

Highest Gene Contributien of Top 3 Components

Components
mmm Component 1

05 mm Component 2

mm Component 3

Loading Score {Magnitude}

ENSGO0000132432 ENSGO0000111640 ENSGOO000137970 ENSGO0000106153 ENSGO0QO00135480 ENSGO0000210082 ENSGOO000142937 ENSGO0000140988 ENSGO0Q000135446 ENSGO0000137154
Gene

Figure 101: 10 genes with the highest loading scores for the first three principal components of the benchmarking data

6.4.4.2 Simulated Data

Compared to the benchmarking and mouse cortex data (see section below), far more genes from the raw data
significantly contribute to the top principal components. Again, when standardization is applied, gene
contribution is increased, although this does not seem to have such as substantial effect. This is interesting as it
reveals a difference between the biological and artificial data, perhaps because Splatter produces less extreme
outliers than observed in real data.

The total variation of the top three principal components was similar to the benchmarking dataset at 66% with
the first PC contributing 53.3%, and the second and third 8.1% and 4.5%. Overall, there was far more variation
between genes with high loading scores for the top components (see Figure 103). For example, even though
Genel3543 has the most significant contribution to the first PC, it does not contribute the most to the second
or third. Regardless, this gene still provides the most variation overall as the first component is considerably
more important than the others.

https://www.genecards.org/cgi-bin/carddisp.pl?gene=SEC61G
https://www.genecards.org/cgi-bin/carddisp.pl?gene=SEC61G

Contribution of Genes to Principal Components

0002
0001
0.000
-0.001
-0.002

ne

Contribution of Genes to Principal Components

003
002
001
0.00
—001
~0.02

Figure 102: Loading scores for the top 20 principal components against 20 genes for the unstandardized (left) and standardized
(right) simulated data

Principal Component
Principal Component

Genel
Gene2
Genes
Genes
Genes
Genel
Genes
Genes
EG‘MW
Genell
Genel2
Genel3
Geneld
Genels
Genels
Genel?
Genels
Gene20
Genel
Genez
Gene3
Gened.
Genes.
Genes
Gene?
Genes
Gened
goeneo
 Genell
Genel3
Genels
Genels
Genels
Genels
Geneld
Gene2a

=

Highest Gene Contributien of Top 3 Components

06 Components

mmm Component 1
05 mmm Component 2
) mm Component 3

Loading Score (Magnitude)

Genel3543 Genellls0 Gene7l0 Genel3l75 Gene241l Geneld3s0 Gene7778 Genel2d4dl Gene2444 Gene9136
Gene

Figure 103: 10 genes with the highest loading scores for the first three principal components of the simulated data

6.4.4.3 Mouse Cortex Data

Like the benchmarking dataset, without standardization only a minority of genes significantly contribute to the
top principal components. While after applying standardization, the contribution is far more evenly distributed
(see Figure 104). The top three principal components contain a much higher total variation of 92.9% compared
to the other datasets, with the first supplying 80% and the following two 9.9% and 3%. The most representative
gene was r_SSU-rRNA_Hsa (Figure 105), denoting the small subunit rRNA gene for has, followed by the large
subunit rRNA gene for hsa. This result is not too surprising as ribosomes consist of two subunits and about 80
percent of RNA is ribosomal RNA [88].

Contribution of Genes to Principal Components

-06
05
04
03
02
01
00
-01

g
3
g

Contribution of Genes to Principal Components

-010
005
000
005
010

Figure 104: Loading scores for the top 20 principal components against 20 genes for the unstandardized (left) and standardized
(right) mouse cortex data

Principal Component

BB v bl W B 121w 9 8 7 6 5 4 3 2 10

CHYL
HY3

[LTR33A_
CRLTR10A
CIAPLTR1_Mm
G

" tRNA-His.CAY_
s

[RUTR4 Mm
1(CCecEin

[RLTR44C

[(CAGCTIN

[tRNA-Ser-TCA(m)
© RUTR10D2

T MurSATL
LAY

H3
[1TR334_
[RLTR10A
TIAPLTRL_ Mm
r.(Gin

T tRNA-His-CAY_
T HRNALYS-AAG
1 ERNA-AST-AAC
[RNATIPTGG
e
[RLTR4_Mm
CRNATYETAC

1 tRNA-Leu-CTG
© RLTR44C

¢ (CAGCT)n

T tRNA-Ser-TCA(m)
T RLTR10D2

T MurSATI -

g
g

Highest Gene Contribution of Top 3 Components

‘Components
mm Component L
0.8 = Component 2
e Component 3

06

Loading Score (Magnitude)

0.2

00

r S5U-rANA_Hsa r LSU-rRNA_Hsa r B2 Mmz2 r B2 _Mmlt r B2 Mmla r BC1_Mm r 4.55RNA r B1 Musl r_TSLRNA r L1Md_F2
Gene

Figure 105: 10 genes with the highest loading scores for the first three principal components of the mouse cortex data

6.4.5 Alternative Algorithms

In the experiments above, k-means was able to correctly assign the cell lines / groups to all cells in the test sets
for both the benchmarking and simulated dataset. Agglomerative hierarchical was also able to get a perfect
score for the benchmarking data and got only one cell wrong for the simulated data. While these results are
good, the experiments above were limited to only 150 and 500 samples respectively. Therefore, in this section,
all 902 cells in the benchmarking data and 2000 in the simulated data will be tested against six different
clustering algorithms and four dimensionality reduction techniques.

The full table of results for each experiment is available in Appendix B. Additionally, note that for some of the
2D graphs in this part, clicking on the figure will link to a 3D version as this better captures the shape of the
clusters when applied to high dimensional data.

3PCA-unencoded 3 PCA - unencoded 3 PCA - unencoded 3 PCA - unencoded 4 PCA - unencoded 3 PCA - unencoded

6.4.5.1 Benchmarking Data 1
Principal Component Analysis (PCA)

As in the previous experiments, PCA was run
with between 2 to 20 components on both
the encoded and original data with and
without applying standardization. Each time,
six different clustering algorithms were applied

and the combination of data and parameters 00 , :

. . K-Means Hierarchical Birch Mini Batch K-Means Spectral Clusterin Gaussian Mixture
that achieved the highest accuracy were Clustering Algarithm * ¢
recor.ded af)d plotted in Figurf—:- '106- The new Figure 106: Histogram displaying best accuracy of the six clustering
algorithms include: BIRCH, mini-batch k-means, algorithms, along with the optimal number of principal components and
spectral clustering and gaussian mixture. whether the benchmarking data was encoded or not

Overall, every clustering algorithm was able to get at least 99.8% accuracy when applying standardization to the
original gene count data. Both agglomerative hierarchical (shown in Figure 107) and BIRCH were able to achieve
a 99.9% accuracy and ARI 0.997 using three principal components with only CELL_000002 being clustered
incorrectly. Spectral clustering gave the same results, although a fourth principal component was required.

)
3 3
3. °
o R*
2 2
° ©
(¥ Difference
' ° =
N 1
z » z
0 o ;
. |
- 3 A
2
29 1 A
= y °
hY 0 N
v
X) =3 X

Figure 107: (Clickable) Hierarchical clustering prediction (left) and incorrect cell (right) for 3 PC standardized unencoded
benchmarking data

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_hierarchical_3_PCA_99.9%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_hierarchical_3_PCA_99.9%25.html

72

Independent Component Analysis (ICA)

ICA is an algorithm designed for separating signals from linearly mixed sources [89]. A study by Feng et al. [90]
compared PCA, ICA and NMF for some scRNA-seq datasets and has shown that combining this technique with
clustering can at times outperform PCA.

The results of ICA on this dataset are same as when using PCA (refer to Figure 110). Once again, CELL_000002
was not able to be identified with agglomerative hierarchical (Figure 109), BIRCH and spectral clustering.

3ICA-unencoded 3 ICA-unencoded 3 ICA - unencoded 3 ICA - unencoded 4 ICA - unencoded 3 ICA - unencoded

10
2 ‘ /
08 |’
1
L ~
il
o G N 3269682 Difference
4 y: 05699838
’ z:-0.05842386
04 -2 CELL_000002, H1975
2
=%
0
02 A
S 2
" % / <
3 g, 2
00 N < y

T T
K-Means Hierarchical Birch Mini Batch K-Means Spectral Clustering Gaussian Mixture L
Clustering Algorithm

=

Accuracy

Figure 110: Histogram displaying best accuracy of the six clustering Figure 109: (Clickable) Hierarchical clustering
algorithms, along with the optimal number of independent components and prediction (left) and incorrect cell (right) for 3 IC
whether the benchmarking data was encoded or not standardized unencoded benchmarking data

2 NMF - unencoded 8 NMF - unencoded 8 NMF - unencoded 14 NMF - unencoded 4 NMF - unencoded

Non-negative matrix factorization (NMF) 10

NMF is a class of algorithms for feature 08

extraction of a matrix X that finds two

matrices W and H whose product 58]

approximates the original [91]. As this g

technique only works on non-negative data, a ™ 14 WWE _encoded
constant sometimes had to be added to all 0l

features of the data to prevent any values being

negative. 00]

T T
K-Means Hierarchical Birch Mini Batch K-Means Spectral Clustering Gaussian Mixture
Clustering Algorithm

Figure 108 s.uggests this te(Ehnlque s.eemed to Figure 108: Histogram displaying best accuracy of the six clustering
work well with most clustering algorithms algorithms, along with the optimal number of NMF basis components and
except spectral clustering, in which the best whether the benchmarking data was encoded or not

result assigning only one cell to two clusters

and all others to a third cluster. It is also worth noting that this algorithm was far slower to run PCA or ICA.

The best documented result was k-means with two basis components on the unencoded, standardized data
achieving a 99.9% accuracy. However, when the algorithm was run again to view the graph, this resulted in a
lower accuracy of 87% and ARI 0.696. On inspection of Figure 111, it is obvious that the cell lines have not been
separated enough for k-means to reliably cluster them.

~

NMF Basis Component 1
B
. o
08° &
20 .
~
° .
NZa e
ase o
3 s °,
28 L
NMF Basis Component 1

- 3
1 . 1
s b Y .
cnled o . .
-2 1) 1 2 -2 1 0 1 2
NMF Basis Component 0 NMF Basis Component 0

Figure 111: (Clickable) K-means prediction (left) and true cell lines (right) for 2 NMF basis components on standardized
benchmarking data

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_k-means_3_NMF_87%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_k-means_3_NMF_87%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_hierarchical_3_ICA_99.9%25.html

73

The next best was Gaussian mixture with 4 basis components and standardization getting 99.8% accuracy and
0.993 ARI. Again CELL_000002 was not identified, along with CELL_000077, though this hard to see this in the
2D version of the graph as the cells overlap.

4 4

- .] -
g oo #, o . E
% ? . ., "' % < 2 034 2 Difference
a e o, a
5 “l o ° ¢ 5
o)
. ﬂ 0
2 Fo B, : o
a o e @ o @
) »* @

£ % . =
= . .0‘ :t-!’. . =

. N o ee :. P N

e. Pt S ew ®
¥ r_g‘ ;._,*- » ..
by &%ée ,
Ol
1 o ¥ "!“ » -1
—a 2 0 2 -4 -2 0 2
NMF Basis Component 0 NMF Basis Component 0

Figure 113: (Clickable) Gaussian mixture prediction (left) and identifying one of two incorrect cells (right) for 4 NMF basis
components on standardized benchmarking data

10 2 PCA - encoded 2 PCA - encoded 2 PCA - encoded 2 PCA - encoded 2 PCA - encoded 2 PCA - encoded

PCA with t-SNE 08

As PCA was the best technique, again different .
numbers of principal components were tested,
but this time applied t-SNE before clustering. 04
The best results were identical for all clustering

techniques with 99.67% accuracy (Figure 112), vz
with each performing best on the encoded data

with standardization and two principal K-Means Hierarchical Birch Mini Batch k-Means Spectral Clustering Gaussian Mixture

Clustering Algorithm
components. Figure 112: Histogram displaying best accuracy of the six clustering

algorithms with t-SNE, along with the optimal number of PCA components
and whether the benchmarking data was encoded or not

@

Accuracy

When running mini batch k-means, it performed
slightly worse than excepted with 99% accuracy
and 0.970 ARI. On observation, all clusters seem to be well defined and clearly seperated. However, this is
misleading as t-SNE has incorrectly grouped nine of the cells. Interestingly though, this is the only experiement
to correctly cluster CELL_000002. It is also the first in which the encoding outperformed the original data.

PC1
o

PC1
L]
i g

-1.5 -1 -0.5 o 0.5 1 1.5 -15 -1 -0.5 0 0.5 1 1.5
PCO PCO

Figure 114: (Clickable) Mini batch k-means prediction (left) and incorrectly identified cells (right) for 2 principal components and t-
SNE for the encoded, standardized benchmarking data

Conclusion

The best dimensionality reduction techniques are PCA and ICA achieving 99.9% accuracy with agglomerative
hierarchical, BIRCH and spectral clustering. NMF did not perform so well with poor results when combined with
spectral clustering. Applying t-SNE led to a lower accuracy, however different samples were incorrectly
clustered compared to when it is not used.

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_gaussian_4_NMF_99.8%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_gaussian_4_NMF_99.8%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_minibatch_k-means_2_PCA_t-SNE_99%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Benchmarking_Data/sc_10x_minibatch_k-means_2_PCA_t-SNE_99%25.html

74

6.4.5.2 Simulated Data
Principal Component Analysis (PCA)

With PCA, k-means, agglomerative
hierarchical, BIRCH and gaussian mixture were
all able to identify the group for all 2000 cells.
Figure 117 demonstrates this for BIRCH with
four independent components. K-means was
the only algorithm for which the encoding
improved performance, although both it and
gaussian mixture required far more principal
components than either hierarchical or BIRCH.
Spectral clustering was worse than the other
algorithms as 39 of the cells were incorrect.

6

5

PC1
[N

.
.

PCO

9 PCAencoded 4 PCA - unencoded 4 PCA - unencoded 4 PCA -unencoded ¢ pen nencoded 2 Fiofh - unencaded

10

02

0.0

Eir'tn Mini Batcr‘\ K-Means Spectral Clustering Gaussian Mixture
Clustering Algorithm

K-Means

Hierarchical

Figure 115: Histogram displaying best accuracy of the six clustering
algorithms, along with the optimal number of principal components and
whether the simulated data was encoded or not

b L W

PCO

PC1

de

Figure 117: (Clickable) BIRCH prediction (left) and cell lines (right) for 4 principal components on standardized benchmarking data

Independent Component Analysis (ICA)

Again, ICA’s results are very similar to PCA. The
only difference is that mini-batch k-means
required another component and was unable
to identify three cells rather than two. Though
it could be said that ICA is therefore worse
than PCA for this dataset, when comparing
BIRCH with four independent components
(Figure 118) to the previous experiment (Figure
117), the groups seems better separated in both
the 2D and 3D graphs. This would be beneficial
if more samples were included or if there was
more noise in gene expression.

IC1
~

-4

Accuracy

9 ICA - encoded 4ICA - unencoded 41ICA-unencoded 5ICA-unencoded g ca . ynencoded 2 IGA-unencoded

=
1=}

T T
Birch Mini Batch K-Means Spectral Clustering Gaussian Mixture
Clustering Algorithm

K-Means Hierarchical

Figure 116: Histogram displaying best accuracy of the six clustering
algorithms, along with the optimal number of independent components and
whether the simulated data was encoded or not

Figure 118: (Clickable) BIRCH prediction (left) and cell lines (right) for 4 independent components on standardized benchmarking

data

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_birch_4_PCA_100%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_birch_4_PCA_100%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_birch_4_ICA_100%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_birch_4_ICA_100%25.html

Non-negative matrix factorization (NMF)

The optimal results for each clustering
algorithm with NMF were far more varied than
with PCA and ICA. Both agglomerative
hierarchical clustering and BIRCH
outperformed the rest as their results were
the same. This is probably because BIRCH is
another form of hierarchical clustering.
However, even the best performing algorithms
with were not as good as the worst
performance with either PCA or ICA.

17 NMF - unencoded

K-Means

11 WMF - unencoded 11 NMF - unenceded

8 MMF - unencoded

11 WMF - encoded

Birch
Clustering Algorithm

Hierarchical

13 NMF - encoded

Mini Bath:\ K-Means Spectral Clustering Gaussian Mixture

Figure 119: Histogram displaying best accuracy of the six clustering
algorithms, along with the optimal number of NMF basis components and

Agglomerative hierarchical clustering with 11 whether the simulated data was encoded or not

basis components is displayed in Figure 120.
This received 85% accuracy and 0.857 ARI which unfortunately is lower than the documented best result of this

algorithm at 92.2%.

NMF Basis Component 1
w
.
NMF Basis Component 1

NMF Basis Component 0

NMF Basis Component 0

Figure 120: (Clickable) Agglomerative hierarchical prediction (left) and true cell lines (right) for 11 NMF basis components on

unstandardized benchmarking data

PCA with t-SNE 10

Combining PCA and t-SNE, every clustering 08
algorithm was able to get 100% accuracy with
two principal components and encoding.
However, when running multiple times with
this configuration, the result was not 0
reproducible every time. This is because t-SNE
can be highly variable even with the same
parameters. For example, Figure 122 shows the
outcome of spectral clustering with 2 principal
components achieving 100% accuracy, while
Figure 123 shows the same algorithms run again
with just 50% accuracy.

Aecuracy

i

75

2 PCA - encoded

2 PCA - encoded 2 PCA - encoded

2 PCA - encoded

2 PCA - encoded

K-Means

Birch
Clustering Algorithm

Hierarchical

2 PCA - encoded

Mini Bahcr‘w K-Means Spectral Clustering Gaussian Mixture

Figure 121: Histogram displaying best accuracy of the six clustering
algorithms, along with the optimal number of t-SNE components and
whether the simulated data was encoded or not

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_hierarchical_11_NMF_85%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_hierarchical_11_NMF_85%25.html

76

t-SNE 1
t-SNE 1

0 - . °
o, d
-0.5 ' . 0.5

-2 -1 0 1 2 2 1 o 1 2
t-SNE 0 t-SNE 0

Figure 122: (Clickable) Spectral clustering prediction (left) and excepted groups (right) for 2 principal components with t-SNE for the
encoded, unstandardized benchmarking data getting 100% accuracy

2 2 am'”m
15 15 .
Q 0.5 Q 0.5
| ety i B Eens | e B e
o R, A A ¥ 5 ; e
. ‘h';ﬁ"&"f.a‘_‘;_ﬂ:'-*'- '-’l'f'r' : \’ﬁﬂ“{;f_u.'-.i- ?ﬁ

PCO PCO

Figure 123: (Clickable) Spectral clustering prediction (left) and excepted groups (right) for 2 principal components with t-SNE for the
encoded, unstandardized benchmarking data getting 50% accuracy

Conclusion

Again, both PCA and ICA performed best with each able to attain 100% with multiple clustering algorithms.
Although applying t-SNE will sometimes separate the groups, it is highly variable across runs and not reliable.

6.4.6 Biclustering

A limitation of standard clustering algorithms like k-means and hierarchical is that they cluster genes on the
assumption that all genes show similar behaviour in any condition. However, some genes are co-expressed
meaning they will show a similar expression pattern to other genes under certain experimental conditions but
not under others. Biclustering is a type of clustering algorithm that clusters both cells and genes simultaneously
therefore making it suitable for detecting co-expression [92].

6.4.6.1 Mouse Cortex Data

In the study by Zeisel et al. [49] in which the mouse cortex dataset was created, they determined that
biclustering would be a more suitable method of separating this dataset than hierarchical clustering. This is
backed up by my findings in the experiments above as there does not seem to be a clear way to separate the
data with traditional clustering. Therefore, | decided to try spectral biclustering with 6 x 6 clusters on the gene
counts of the test data (right of Figure 125) and plot the clusters against the original gene expression matrix (left
of Figure 125).

The unclustered expression matrix was dominated by counts from a single gene, MER115, uncovering that many
cells show a far stronger expression of this gene than any other. Note that although the name of this gene is not
visible on the axis, it can be seen as a thin coloured line on the right side of the gene expression matrix.
Biclustering caused the order of the cells and genes to be rearranged, though the graph looked similar to the
original gene expression matrix as MER115 still dominated. To make the results clearer, | plotted a graph

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_spectral_2_PCA_t-SNE_100%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_spectral_2_PCA_t-SNE_100%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_spectral_2_PCA_t-SNE_50%25.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Alternative_Algorithms/Simulated_Data/splat_spectral_2_PCA_t-SNE_50%25.html

Cells

identifying the region of each bicluster. This revealed that there are several small sub-groups of genes with
similar yet unusual patterns of co-expression.

Gene Expression of Cells Bicluster Regions
1772066101_A04

1772058177°H02
- 10000 1720710407604
1772067054”A09
1772058171 G03
1772066098 £05
1772066097 D04
1772062115°G01
1772062118_F04
_ 8000 1720661107404
1772067034°£03
1772066098 C02
1772067054"A11
1772063063 E12
17720630617E05
1772062113 G12
| e000 1772067065 ALL
1772066096 FOL
1772071040_A0L
1772062118 H11
177206 7093_A03
1772071036°C10
1772063068 B12
1772066074 CO8
- 4000 1772067059 £04
1772067060 1G04
1772066077 G04
1772060225.C12
1772067054 B03
1772071014 F02
1772066076 506
- 2000 1772067094 E06
17720670947 F04
1772066097 203
1772071017 G0l
1772068073 7G0T
1772062116_C06
1772067069°C05
1772066077-C12

1772066102 H06

17720710417C05
1772071014 F02
1772063063 A1l
1772062115 811
1772063064 E06
1772067066 E12
1772071015_A02
1772060226 D12

1772066089_A01
1772067053_A01
17720710417D10
1772067094”A06
1772071041°A08
1772066097 BO6
1772058148 FO6&

Cells
Cells

1772058171°B03
1772063062 HOB
17720710417C10
1772066080 G11
1772071014 E02
1772066100_A03
1772062116 CO6

1772058148 F12
1772066107 E11
1772071017 G12
1772067076_C10
1772067065”A11
17720581717C02 4

e U A CEN EE RO s Ex 2 E S Bt R e Ao e £ s mra Em o musnaL = NEM N ED OO
HIRBESRAE ruqu it Ee SR EESART SEE TR SO LBuoE ENEXRS el
EAS ER R RS SRS R e R AT S0 SR o 102 8P5S mEEYRS SERECQEYRnE LS
CEEESSS PR B E E S DR L En dsE SRS EQ L EETT e =) 5o B o0e BEE RS
Bl S R Sl o Pols Ll Eo dn s gdgasg EeasE2ELSN TR
e =t Q_m#_vdukuEEAKL,gwh [puiaa = puf 01 e 2Ty Bue cHUS Za 0 "o
e o - R hthgupb 23 [) - MEE ::Igdh‘hq p}
Lot 5 D 2-I5 TP 5o "2 il g B
5 g g g e Srur B == = S -

g 7 z

i

il]

Genes Genes

Figure 125: The original gene expression of the mouse cortex data (left) and bicluster regions (right)

Gene Expression of Cells

. . . -200
Whilst the biclustering above reflects true gene iageeisz woe
I, et i s
expression, biclusters are not well distributed which] e
1772063063 A1l
. H M - 1772062115”B11
may not be useful if using biclustering as a tool to Ia0e3ses Eas
H 1 17720710157A02 -15.0
separate cells and genes into regions that can be frsedtse oty
1772062116 BOG
further clustered. Therefore, | repeated the e R s
. 1772067059”A0L
17720710417D10
experiment after applying standardization. This 1172011041 D10
. . . . 4 1772071041°A06 - 10.0
provides a better visualisation of how the gene T Uricgeoor Bog
. .. . © 1772071045 F0d
expression matrix is rearranged (Figure 124) and Inaneeri vt -7
. . . 1772058171_B03
produces more evenly sized biclusters (Figure 126). 1rsamne e
1772066080"G11 - 50
1772071014 E02
1772066100_A03
1772062116 C06
1772063068”D01 -25
17720621137H10
1772058148 F12
1772066107 E11
1772071017 G12
1772067076-C10 -00
1772067065 _A11
177208 LT T T ————
e e e 24 B B8 £t friy & et £
SifpEuesz=cEnemtonzEzees sareeenncEemnasnn
A e vl il e Rk I e e
S BTN o R B e EOEEE R s p TR E S-S E SR TOR
R A e i [SEET-E
= & = 27 RO et] z =
il 2 e Rl - -
&
E,
Genes
Figure 124: Gene expression of the standardized mouse
cortex data
Biclustered i i
1772066102_H06 -200 1772066102_HO6 BICIuSter Reglons
1772063061 E05 1772063061_EQS
1772062113 17720621137H10
17720710157/ ADZ 1772071015 A02
g;%gé%g‘é;;gg -17.5 1772071045 F04
17720630647F09
1772067096 G04 1772067096 G04
17720710367C10 1772071036°C10
1772071017D07 1772071017 D07
1772066073°C09 -15.0 1772066073 C09
1772066103°C03 17720661037C03
1772071017 GO1 1772071017 °G01
1772060240~G10 1772060240°G10
1772052109_612 -12.5 1772062109°G12
1772066100_A11 1772066100 A11
1772063061°G03 1772063061°G03
1772062109 F06 1772062109 F06
17720602407B01 1772060240801
1772067076 C10 -10.0 w 1772067076 CL0
1772058177:E12 = 1772058177 E12
17720670697C05 = 1772067069°C05
1772067094 G05 o 1772067094 GO5
1772066102 F03 - 75 1772066107 F03
1772060225 D07 1772060225 D07
1772067074 F09 1772067074 F09
1772067074 D06 1772067074 D&
1772063068 F10 1772063068 F10
1772063078 D12 50 1772063078 D12
1772071041 D10 1772071041 D10
1772066108 A08 1772066108 AD8
17720670587A06 1772067058”A06
1772063062_G01 -25 1772063062 G01
1772066099_A07 1772066099 A0T
1772067057"A12 1772067057"A12
1772063070_F03 1772063070 FO3
1772067060°E04 1772067060 E04
1772067070 -A05 00 1772067070405
1772063064 HO3 1772063064 HO3
1772066107_E01 0 ') T 1772066107 E01

o mc %0 L M R
ESDERS Ea] SEoE o D e e @ e D
ERGDS G2 2255 p RS PR DoR s
BEOCER AT i z S UEPRECOERE S
= SEEREE o SHES £= E-E-BRORERES
= , E-LECE 34 5 3 ' peck = =) Efﬂzékm
e 2 TG 4 Ul BTE-T
&2 5 & £ B0 % RN IS T
i G S5 3 2 - pol o
=02 2, il
g
&,
Genes Genes

Figure 126: Rearrangement of the matrix after biclustering (left) and identification of the bicluster regions (right) for the
standardized mouse cortex data

78

6.5 Topological Data Analysis

To meet objective 6, Kepler Mapper was run on the datasets to visualise their high-dimensional shapes. First
each dataset was projected onto a lower-dimensional space using 2 principal components, then a simplicial
complex constructed using 10 hypercubes with 0.15 overlap and k-means clustering. The selection of these
parameters is explained during Implementation and they have been kept consistent so that each dataset can be
directly compared. Again, links to interactive versions of the graphs have been included by clicking the figures.

6.5.1 Benchmarking Data

The simplicial complex of the benchmarking dataset is below in Figure 127. Most nodes are connected
suggesting that most cells have some correlation in gene expression. Even so, the cell lines can still be identified
as the three most connected regions. In addition, there are also several nodes that are not joined to the main
complex which represent clusters of cells with more unusual gene expression. However as mentioned during
Implementation, if the overlap € was increased then some of these nodes would join the main complex, while if
it was decreased then more of these distinct nodes would form.

Figure 127: (Clickable) Simplicial complex of benchmarking data (left) and simulated data (right)

6.5.2 Simulated Data

Compared to the benchmarking data, the groups of the simulated data are far more clearly defined and
separated from one another (see Figure 127). This suggests that gene expression between the groups do not
overlap as much as true biological data. Furthermore, the groups themselves form straight lines indicating that
there is a lot less variation within each of them.

6.5.3 Mouse Cortex Data

The simplicial complex of this dataset (Figure 128) is far more

complicated than the others reflecting the greater variation of

gene expression within the mouse cortex and hippocampus. As

seen during Clustering, the groups are not well defined, though e dile
this graph implies most cells can be split into two distinct . R
regions. There are also far more individual nodes compared to ° N
the other datasets, though this is likely because this dataset

contains the most cells.

6.5.4 Comparing TDA to Clustering

The graphs produced by Mapper provide a better overview of

the whole datasets than the lower dimensional graphs created

during Clustering. With hindsight, TDA would be a beneficial

tool to use to inspect a dataset before clustering to give insight ;

into how to approach th? problem. For example, perhaps '_t Figure 128: (Clickable) Simplicial complex of the mouse
would have been better if the mouse cortex dataset was first cortex data

split into two sub-groups before clustering.

https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Final_Graphs/simulated_scRNAseq_graph.html
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Final_Graphs/benchmarking_scRNAseq_graph
https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Graphs/Topological_Data_Analysis/Final_Graphs/evaluation_scRNAseq_graph.html

79

7. Conclusions and Future Work

This is the final section of the report consisting of a general overview of the project, evaluation against aims and
objectives, findings and conclusions from the results, proposals for future work and the final statement.

7.1

Overview

The aim set at the start is to detect hidden gene expression in single-cell RNA-sequencing data. The focus has
been around exploring pre-processing techniques to improve performance of clustering cells with similar gene
expression for three different datasets.

An optimised autoencoder was created to encode each dataset to capture key features in a lower dimensional
space. Standardization and PCA were applied to both the original and encoded data before running k-means and
agglomerative hierarchical clustering. The effectiveness of each technique was thoroughly assessed by testing
different combinations and parameters. Other algorithms briefly explored include: ICA and NMF for
dimensionality reduction, BIRCH, mini batch k-means, spectral clustering, and Gaussian mixture clustering
algorithms and spectral biclustering. Finally, for each dataset a simplicial complex was constructed using Mapper
to view the topology of the higher dimensional space of the data.

7.2

Evaluation Against Objectives
Overall, the project has been successful with most sub-objectives fulfilled, all key milestones met by their
deadlines, as well as experimentation with many techniques not originally proposed. The objectives and sub-
objectives, detailed earlier in Requirements and Specification, are listed in Table 19. Achieved sub-objectives are
coloured green, while those not fulfilled are red. For each, an explanation has been written justifying either how
the objective was met or why it was not satisfied.

Objective

Sub-objective

Justification

1.1 | Research and Review multiple sources, including papers and At the start of the project, | performed
understand single- articles on single-cell RNA-seq detailed background research on the problem
cell RNA-seq and area and selected three different types of

1.2 | the resulting Write a summary of the technical details of RNA- | dataset as documented in the Literature
datasets seq and challenges with the type of data in the Review.

Literature Review

1.3 Select datasets for benchmarking and evaluation

2.1 | Review literature Research and compare at least two data Early on | researched PCA and autoencoders
for data encoding encoding methods in the Literature Review and documented them in the Literature
techniques, neural Review. Though these were my initial focus,

2.2 | network Research neural network optimisation later other dimensionality reduction methods
optimisation techniques and write a summary in Literature were explored briefly during Clustering.
methods, clustering | Review Several techniques for optimising the
methods and - autoencoder were studied in both the

23 topological data Research 'and compare at IeasF two clustering Literature Review and System and
analysis methods in the Literature Review Experiment Design, along with k-means,

2.4 Research topological data analysis and write a hierarchical clustering and constructing

summary in the Literature Review simplicial complexes with Mapper.

3.1 | Implement an Split dataset into testing and training data After opening the selected dataset, samples
autoencoder that are batched and divided into testing, training,

3.2 | canextractalower | Implementan encoder that can produce a and validation. The autoencoder was
dimensional compressed version of input data with less implemented as a PyTorch Lightning class,
representation of features initially with the architecture set out in

3.3 biological data Implement a decoder thaF can reconstruct the i;/;tfan;eaEgtsﬁggrégin;gﬁ;f&:glrsertTLc;iel

compressed data 50 that it has the same number both encoded and decoded representations.
of features as the input data

4.1 | Test and Experiment with different learning rates and To optimise the autoencoder, several
experiment with update the autoencoder to use the optimum different learning rates, batch sizes,
different neural optimisers, number of hidden layers,

4.2 | network Experiment with different batch sizes and update

architectures and

the autoencoder to use the optimum

activation functions and epochs were tested
as documented in Testing and Validation. The

4.3 | apply optimisation Experiment with different optimisers and select optimal parameters were then set and
techniques to the the best for the autoencoder autoencoders trained and save to file for
autoencoder to . — . each dataset. Unfortunately, not all sub-

4.4 | determine how Experiment with different numbers of hidden objectives were met as only the autoencoder
these change the layers and features to optimise the structure of of the mouse cortex dataset was able to
quality of the the autoencoder surpass 50% accuracy when recreating the
encoding - S gene counts from the encoding and

4.5 IImprove decoded output so it produces 50% or variational autoencoders were not

ess error attempted.

4.6 Train the optimised autoencoder

4.7 Convert autoencoder to VAE autoencoder

5.1 | Apply clustering Run the trained autoencoder on test data to Trained autoencoders for each dataset were
methods to the retrieve the encoding loaded from file to encode the gene counts.
encoded data . Both k-means and hierarchical clustering

52 Perform k-means clustering on encoded data were performed on the encoded and original

) Porf I tve i hical clustert data with PCA, and the results recorded in

: er o(;n:jadggtomera e nierarchical clustering on - gy stem and Experiment Design. In addition,
encodeddata alternative clustering algorithms BIRCH, mini

54 Perform clustering on secondary datasets ba!tch k-means, spect_ral clust.erln.g, Gafiss'a“

mixture were tested in combination with new
dimensionality reduction techniques
independent component analysis and non-
negative matrix factorisation. t-SNE and
spectral biclustering were also covered.

6.1 | Apply a topological | Create a simplicial complex from the first dataset | Kepler Mapper was run to produce a
data analysis S simplicial complex for each dataset. These

6.2 | method to the data | Plot the simplicial complex can be seen in System and Experiment

Design, while parameter selection is detailed

6.3 Perform TDA on secondary datasets in Implementation.

7.1 | Evaluate the Document clustering results in report System and Experiment Design documents
performance of . experiments from both clustering and TDA. A

7.2 | topological data Document TDA results in report brief comparison between the two methods

lysis i i itt t th d of thi tion.

7.3 ana YSIS. n Compare the results from the two methods and 15 written at the end ot This section
comparison to lain findi
clustering methods explain findings

8.1 | Review the results Evaluate project against aims and objectives The project has been evaluated against
of the project and . objectives in this section. The overall results,

8.2 | recommend future | Suggest how the project could have been improvements and considerations are
improvements improved with hindsight and how it could be detailed below in under Results and

continued in the future Recommendations and Future Work.

Table 19: Evaluation of objectives and sub-objectives

7.3 Results and Recommendations
| achieved state-of-the-art results for two out of three datasets. For the first, sc_10x, | identified all three cell
lines with 99.9% accuracy through a combination of standardization, PCA or ICA with three components and
BIRCH or agglomerative hierarchical clustering. These results outperformed experiments by the dataset’s

creators L. Tian et al. [79]. The second was a simulated dataset created during this project using Splat that

comprises four sub-populations of differently expressed genes. For this | accomplished 100% accuracy using
PCA and ICA with multiple clustering algorithms.

Unfortunately, | was not able to get good results for the third dataset, mouse cortex mRNA. Unlike the others,

there is a lot of overlap in genetic expression between cells and so the techniques attempted were not effective
at separating them into distinct regions for clustering. Therefore, for this dataset, a different approach should be
adopted than that tested in this project.

| have learnt a lot and therefore have several recommendations for future researchers:

¢ Topological Data Analysis -TDA gives a high-dimensional overview of a dataset and good insight into

80

relationships in gene expression between cells. Though | applied Mapper at the end, it would be beneficial to

https://www.researchgate.net/publication/328071371_scRNA-seq_mixology_towards_better_benchmarking_of_single_cell_RNA-seq_protocols_and_analysis_methods
https://www.researchgate.net/publication/328071371_scRNA-seq_mixology_towards_better_benchmarking_of_single_cell_RNA-seq_protocols_and_analysis_methods

run this at the start of a project to visualise the structure of a new dataset as this can help determine the
type of approach required.

¢ Autoencoders - Autoencoders are used for noise reduction and dimensionality reduction by compressing
gene expression into a lower-dimensional space. The best clustering results for the first dataset were
attained without encoding, while top results were achieved both with and without encoding the simulated
data. Effectiveness is therefore dependent on the data, though it is always worth testing multiple
approaches.

¢ Standardization - Applying standardization before dimensionality reduction can often improve results by
increasing the separation of the clusters.

¢ Feature optimisation -Testing different number of components is valuable when using dimensionality
reduction techniques such as PCA or ICA. If the value is too low, too little variation will be captured for the
cells to be separated, while increasing it too much will introduce noise which can also be detrimental. Whilst
| did not test different feature numbers for the autoencoder’s encoding, | imagine this would applicable too.

¢ t-SNE -This is a good option to try if cells are not separable by other methods, however, it should be used
with caution as it has can produce misleading results. If used, different perplexity values should be tested as
changing this parameter can cause results to vary significantly.

7.4 Future Work

Throughout the project, | encountered many different techniques and approaches that could be worth
investigating. However, due to limited scope and time constraints, it was not possible for each to be attempted.
As a result, there are many ways in which this research could be improved or extended including:

+ Variational autoencoders - Compared to deterministic autoencoders, variational autoencoder give greater
control over how the latent distribution is modelled. This means that a VAE may be able to capture a better
representation of the data resulting in a more precise encoding [93].

+ Data simulators - To generate the simulated dataset, | used the Splat simulator which is part the R package
Splatter. However, as explained during the Literature Review, this package also supports several other
simulation tools and the ability of each to imitate a dataset is highly variable. Several of the experiments
conducted in this project revealed obvious differences between the simulated and real datasets. Therefore,
it would be worthwhile to try different simulators to create more biologically realistic data.

¢ Normalisation - When collecting scRNA-seq data from an experiment, normalisation is an important step in
which data is adjusted due to differences in experimental conditions. | did not attempt to apply
normalisation as | used secondary data and did not feel it was applicable. However, with hindsight | think
research into normalisation methods would have been beneficial as leaving this step out can lead to false
differences in gene expression [94].

¢ Ensemble clustering - Combining different clustering algorithms and pre-processing methods as an
ensemble may produce a better result than any one individual method. For example, the best result when
clustering all cells of the benchmark dataset correctly identified the cell line of all but one sample. However,
when t-SNE was applied, all incorrectly clustered samples were different. In theory, 100% accuracy could be
achieved for this dataset through merging the results of these and other techniques.

¢ Biclustering - As explained in the paper by Zeisel et al. [49] and demonstrated in this project, the mouse
cortex dataset is not suitable for separating by traditional clustering methods due to overlapping gene
expression. Therefore, other methods are recommended such as biclustering to split cells and genes into
sub-groups onto which clustering can be further applied. Although | did attempt spectral biclustering, | did
not have time to thoroughly explore this method.

7.5 Final Statement

This project has been a great opportunity to apply knowledge learnt throughout my degree and to contribute
research to a rapidly evolving field. Reflecting back to the start, | had little prior knowledge of the problem
background, autoencoders or topological data analysis. Through extensive literature review and guidance from
my sponsor | have now gained useful skills in these areas.

If | were to start the project again, an interesting approach would be to create a software application rather than
Jupyter notebooks since this would be beneficial to biologists with little experience of coding. Another point is
that | probably should have created more complicated simulated data. Despite using it for secondary testing, |
found it easier to separate than the original biological data.

82

Dr\"r\lﬂr\nﬁr\ﬁ

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

British Computing Society, “BCS Code of Conduct,” 2020. [Online]. Available:
https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/.

UK Government, “Computer Misuse Act 1990,” 2021. [Online]. Available:
https://www.legislation.gov.uk/ukpga/1990/18/contents.

U. Government, “The Data Protection Act,” 2018. [Online]. Available: https://www.gov.uk/data-protection.

Information Commissioner's Office, “Special category data,” 2018. [Online]. Available: https://ico.org.uk/for-
organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-
processing/special-category-data/.

A. f. C. Machinery, “ACM Code of Ethics and Professional Conduct,” 2018. [Online]. Available:
https://www.acm.org/code-of-ethics.

Y. Zheng, “Chapter 6 - Identification of miRNA and siRNA Targets in Plants,” in Computational Non-coding RNA
Biology, 2019, pp. 177-205.

J. M. Churko, G. L. Mantalas, M. P. Snyder and J. C. Wu, “Overview of High Throughput Sequencing Technologies to
Elucidate Molecular Pathways in Cardiovascular Diseases,” PubMed Central, 2014.

GENEWIZ, “Single-Cell RNA Sequencing Frequently Asked Questions,” 2020. [Online]. Available:
https://web.genewiz.com/single-cell-faqg.

A. Haque, J. Engel, S. A. Teichmann and T. Lénnberg, “A practical guide to single-cell RNA-sequencing for biomedical
research and clinical applications,” BMC, 2017.

R. Mackenzie, “RNA-seq: Basics, Applications and Protocol,” 2018. [Online]. Available:
https://www.technologynetworks.com/genomics/articles/rna-seq-basics-applications-and-protocol-299461.

LC Sciences, “single-cell-analysis,” 2020. [Online]. Available: https://www.lcsciences.com/discovery/signle-cell-
analysis/.

Harvard Chan Bioinformatics Core (HBC), “Introduction to Single-cell RNA-seq,” 2020. [Online]. Available:
https://hbctraining.github.io/scRNA-seq/lessons/01_intro_to_scRNA-seq.html.

F. W. Townes, S. C. Hicks, M. J. Aryee and R. A. Irizarry, “Feature selection and dimension reduction for single-cell
RNA-Seq based on a multinomial model,” 2019.

J. Cadima and I. Jolliffe, “Principal component analysis: a review and recent developments,” 2016. [Online]. Available:
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202.

D. Oehm, “PCA vs Autoencoders for Dimensionality Reduction,” 2018. [Online]. Available:
http://gradientdescending.com/pca-vs-autoencoders-for-dimensionality-reduction/.

J. Jordan, “Introduction to autoencoders,” 2018. [Online]. Available: https://www.jeremyjordan.me/autoencoders/.

S. Kim, “Improved survival analysis by learning shared genomic information from pan-cancer data,” 2020. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355236/.

A. F. Agarap, “Implementing an Autoencoder in PyTorch,” 2020. [Online]. Available:
https://medium.com/pytorch/implementing-an-autoencoder-in-pytorch-19baa22647d1.

S. Flores, “Variational Autoencoders are Beautiful,” 2019. [Online]. Available:
https://www.compthree.com/blog/autoencoder/.

National Cancer Institute, “The Cancer Genome Atlas Program,” 2019. [Online]. Available:
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga.

StackExchange, “What is the difference between model hyperparameters and model parameters?,” 2016. [Online].
Available: https://datascience.stackexchange.com/questions/14187/what-is-the-difference-between-model-
hyperparameters-and-model-parameters.

83

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

G. Liu, “Optimizing Neural Networks — Where to Start?,” 2019. [Online]. Available:
https://towardsdatascience.com/optimizing-neural-networks-where-to-start-5a2ed38c8345.

D. Mack, “How to pick the best learning rate for your machine learning project,” 2018. [Online]. Available:
https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2.

J. Jordan, “Setting the learning rate of your neural network.,” 2018. [Online]. Available:
https://www.jeremyjordan.me/nn-learning-rate/.

L. N. Smith, “Cyclical Learning Rates for Training Neural Networks”.

P. Lé, “What’s up with Deep Learning optimizers since Adam?,” 2018. [Online]. Available:
https://medium.com/vitalify-asia/whats-up-with-deep-learning-optimizers-since-adam-5c1d862b9db0.

J. Brownlee, “How to Control the Stability of Training Neural Networks With the Batch Size,” 2019. [Online].
Available: https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-
networks-with-gradient-descent-batch-size/.

M. Peixeiro, “The 3 Best Optimization Methods in Neural Networks,” 2019. [Online]. Available:
https://towardsdatascience.com/the-3-best-optimization-methods-in-neural-networks-40879c887873.

Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,” 2012.

J. Brownlee, “Difference Between a Batch and an Epoch in a Neural Network,” 2018. [Online]. Available:
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/.

J. Brownlee, “Overfitting and Underfitting With Machine Learning Algorithms,” 2016. [Online]. Available:
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/.

Programmer Sought, “[deep learning] keras' EarlyStopping usage and tips,” 2018. [Online]. Available:
https://www.programmersought.com/article/8892539067/.

S. Kaushik, “An Introduction to Clustering and different methods of clustering,” 2016. [Online]. Available:
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-
clustering/#:~:text=Clustering%20is%20the%20task%200f,and%20assign%20them%20into%20clusters..

I. Jamail and A. Moussa, “Current State-of-the-Art of Clustering Methods for Gene Expression Data with RNA-Seq,’
IntechOpen, 2020.

T. A. Geddes, T. Kim, L. Nan, J. G. Burchfield, J. Y. H. Yang, D. Tao and P. Yang, “Autoencoder-based cluster
ensembles for single-cell RNA-seq data analysis,” BMC.

K. Arvai, “K-Means Clustering in Python: A Practical Guide,” 2020. [Online]. Available: https://realpython.com/k-
means-clustering-python/.

B. Zhao, A. Erwin and B. Xue, “How many differentially expressed genes: A perspective from the comparison of
genotypic and phenotypic distances,” ScienceDirect.

C. M. Koch, S. F. Chiu, M. Akbarpour, B. Ankit, K. M. Ridge, E. T. Bartom and D. R. Winter, “A Beginner’s Guide to
Analysis of RNA Sequencing Data,” ATS Journals, 2018.

Z. Singer, “Topological Data Analysis — Unpacking the Buzzword,” 2019. [Online]. Available:
https://towardsdatascience.com/topological-data-analysis-unpacking-the-buzzword-2fab3bb63120.

E. Munch, “A User’s Guide to Topological Data Analysis,” Journal of Learning Analytics, vol. 4, no. 2, p. 47-61, 2017.

H. J. van Veen and N. Saul, “KeplerMapper 1.4.1 documentation,” 2019. [Online]. Available: https://kepler-
mapper.scikit-tda.org/en/latest/theory.html.

M. Piekenbrock, “Data Science and Security Cluster (DSSC),” 2018. [Online]. Available:
https://peekxc.github.io/resources/DSSC_TDA _selected_slides.pdf.

C.S.Pun, K. Xiaand S. X. Lee, “Persistent-Homology-based Machine Learning and its Applications - A Survey,” arXiv,
2018.

Wikipedia, “Persistent homology,” 2021. [Online]. Available: https://en.wikipedia.org/wiki/Persistent_homology.

84

[45]

[46]

[47]
[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

L. Tian, “single cell mixology: single cell RNA-seq benchmarking,” 2018. [Online]. Available:
https://github.com/LuyiTian/sc_mixology.

L. Tian, S. Su, X. Dong, D. Amann-Zalcenstein, C. Biben, A. Seidi, D. J. Hilton, S. H. Naik and M. E. Ritchie, “scPipe: A
flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data,” PMC, 2018.

L. Zappia, B. Phipson and A. Oshlack, “Splatter: simulation of single-cell RNA sequencing data,” BMC, 2017.
Oshlack, “Splatter,” 2016. [Online]. Available: https://github.com/Oshlack/splatter.

A. Zeisel, A. B. Muioz-Manchado, S. Codeluppi, P. Lénnerberg, G. La Manno, A. Juréus, S. Marques, H. Munguba, L.
He, J. Hjerling-Leffler and S. Linnarsson, “Cell types in the mouse cortex and hippocampus revealed bysingle-cell
RNA-seq,” Science Magazine, 2015.

Linnarsson Lab, “Single-cell analysis of mouse cortex,” 2015. [Online]. Available: http://linnarssonlab.org/cortex/.

PyTorch, “PyTorch,” 2020. [Online]. Available: https://pytorch.org/.

J. Nabi, “PyTorch for Deep Learning: A Quick Guide for Starters,” 2019. [Online]. Available:
https://towardsdatascience.com/pytorch-for-deep-learning-a-quick-guide-for-starters-5b60d2dbb564.

Sayantini, “Keras vs TensorFlow vs PyTorch : Comparison of the Deep Learning Frameworks,” 2020. [Online].
Available: https://www.edureka.co/blog/keras-vs-tensorflow-vs-
pytorch/#:~:text=Keras%20has%20a%20simple%20architecture,less%20when%20compared%20to%20Keras..

J. Brownlee, “TensorFlow 2 Tutorial: Get Started in Deep Learning With tf.keras,” 2019. [Online]. Available:
https://machinelearningmastery.com/tensorflow-tutorial-deep-learning-with-tf-keras/.

Al Business, “TensorFlow or PyTorch? A guide to Python machine learning libraries,” 2019. [Online]. Available:
https://aibusiness.com/author.asp?section_id=789&doc_id=761069.

K. Dubovikov, “PyTorch vs TensorFlow — spotting the difference,” 2017. [Online]. Available:
https://towardsdatascience.com/pytorch-vs-tensorflow-spotting-the-difference-25c75777377b.

UFLDL Tutorial, “Autoencoders,” 2020. [Online]. Available:
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/.

J. Brownlee, “Gentle Introduction to the Adam Optimization Algorithm for Deep Learning,” 2017. [Online]. Available:
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/.

V. Bushaeyv, “Adam — latest trends in deep learning optimization.,” 2018. [Online]. Available:
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c.

S. Ruder, “An overview of gradient descent optimization algorithms,” 2016. [Online]. Available:
https://ruder.io/optimizing-gradient-descent/index.html#adadelta.

Kaggle, “When to use Mean Absolute Error vs Mean Squared Error?,” 2019. [Online]. Available:
https://www.kaggle.com/c/home-data-for-ml-course/discussion/143364.

M. Binieli, “Machine learning: an introduction to mean squared error and regression lines,” 2018. [Online]. Available:
https://www.freecodecamp.org/news/machine-learning-mean-squared-error-regression-line-c7dde9a26b93/.

A.S.V, “Understanding Activation Functions in Neural Networks,” 2017. [Online]. Available:
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-
9491262884€0.

J. Brownlee, “A Gentle Introduction to k-fold Cross-Validation,” 2018. [Online]. Available:
https://machinelearningmastery.com/k-fold-cross-validation/.

C. Liu, “Data Transformation: Standardization vs Normalization,” 2017. [Online]. Available:
https://www.kdnuggets.com/2020/04/data-transformation-standardization-normalization.html.

P.-N. M. Tan, M. Steinbach and V. Kumar, K-Means Cluster Analysis, Pearson, 2005.

V. Mallawaarachchi, “Matching of Bipartite Graphs using NetworkX,” 2020. [Online]. Available:
https://towardsdatascience.com/matching-of-bipartite-graphs-using-networkx-6d355b164567.

85

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

StackExchange, “How to test accuracy of an unsupervised clustering model output?,” 2017. [Online]. Available:
https://datascience.stackexchange.com/questions/17461/how-to-test-accuracy-of-an-unsupervised-clustering-
model-output.

Wikipedia, “Rand index,” 2021. [Online]. Available: https://en.wikipedia.org/wiki/Rand_index.

scikit-learn, “sklearn.metrics.adjusted_rand_score,” 2020. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html.

M. Minervino, “Topological data analysis with Mapper,” 2020. [Online]. Available:
https://www.quantmetry.com/blog/topological-data-analysis-with-mapper/.

L. Zappia, B. Phipson and A. Oshlack, “Introduction to Splatter,” 2020. [Online]. Available:
https://www.bioconductor.org/packages/release/bioc/vignettes/splatter/inst/doc/splatter.html.

S. Chilamkurthy, “WRITING CUSTOM DATASETS, DATALOADERS AND TRANSFORMS,” 2017. [Online]. Available:
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html.

PyTorch, “TORCH.UTILS.DATA,” 2019. [Online]. Available: https://pytorch.org/docs/stable/data.html#dataset-
types.

PyTorch Lightning, “TRAINER,” 2018. [Online]. Available: https://pytorch-
lightning.readthedocs.io/en/latest/common/trainer.html.

Stack Overflow, “Keras: How to save models or weights?,” 2019. [Online]. Available:
https://stackoverflow.com/questions/57152978/keras-how-to-save-models-or-weights.

Plotly, “Plotly Python Open Source Graphing Library,” 2021. [Online]. Available: https://plotly.com/python/.

Biostars, “What is the difference between transcript id and Ensembl gene id,” 2013. [Online]. Available:
https://www.biostars.org/p/199073/.

L. Tian, X. Dong, S. Freytag and K.-A. Lé Cao, “scRNA-seq mixology: towards better benchmarking of single cell RNA-
seq protocols and analysis methods,” ResearchGate, 2018.

J. Brownlee, “How to Get Reproducible Results with Keras,” 2019. [Online]. Available:
https://machinelearningmastery.com/reproducible-results-neural-networks-

keras/#:~:text=Neural%20network%20algorithms%20are%20stochastic,data%20can%20produce%20different%20r
esults.&text=The%20random%20initialization%20allows%20the,for%20the%20function%20be.

S. J. Reddi, S. Kale and S. Kumar, “On the Convergence of Adam and Beyond”.

A. Sharma, “Tackling Underfitting And Overfitting Problems In Data Science,” 2018. [Online]. Available:
https://analyticsindiamag.com/tackling-underfitting-and-overfitting-problems-in-data-science/.

C. Versloot, “Why you shouldn'’t use a linear activation function,” 2019. [Online]. Available:
https://www.machinecurve.com/index.php/2019/06/11/why-you-shouldnt-use-a-linear-activation-function/.

S. Pusuluri, “Autoencoders,” 2020. [Online]. Available: https://medium.com/@sakeshpusuluril23/autoencoders-
52c81a6flael.

M. Wattenberg, “How to Use t-SNE Effectively,” 2016. [Online]. Available: https://distill.pub/2016/misread-tsne/.
ReasearchGate, “What is the meaning of negative values in components from PCA analysis?,” 2013. [Online].
Available: https://www.researchgate.net/post/What-is-the-meaning-of-negative-values-in-components-from-PCA-

analysis.

GeneCards, “SEC61G Gene,” 2021. [Online]. Available: https://www.genecards.org/cgi-
bin/carddisp.pl?gene=SEC61G.

Wikipedia, “SSU rRNA,” 2020. [Online]. Available: https://en.wikipedia.org/wiki/SSU_rRNA.

A. Delorme, “Infomax Independent Component Analysis for dummies,” 2021. [Online]. Available:
http://arnauddelorme.com/ica_for_dummies/.

C. Feng, S. Liu, H. Zhang, R. Guan, D. Li, F. Zhou, Y. Liang and X. Feng, “Dimension Reduction and Clustering Models
for Single-Cell RNA Sequencing Data: A Comparative Study,” PCM, 2020.

86

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

sci-kit learn, “Non-Negative Matrix Factorization (NMF),” 2020. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.decomposition.NMF.html.

F. M. Al-Akwaa, “Analysis of Gene Expression Data Using Biclustering Algorithms,” 2012. [Online]. Available:
https://www.intechopen.com/books/functional-genomics/analysis-of-gene-expression-data-using-biclustering-
algorithms.

Stack Exchange, “When should | use a variational autoencoder as opposed to an autoencoder?,” 2018. [Online].
Available: https://stats.stackexchange.com/questions/324340/when-should-i-use-a-variational-autoencoder-as-
opposed-to-an-autoencoder.

C. Evans, J. Hardin and D. M. Stoebel, “Selecting between-sample RNA-Seq normalization methods from the
perspective of their assumptions,” PMC, 2018.

Encode Box, “Autoencoder in biology — review and perspectives,” 2019. [Online]. Available:
https://medium.com/@encodebox/auto-encoder-in-biology-9264da118b83.

G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller and F. J. Theis, “Single-cell RNA-seq denoising using a deep count
autoencoder,” Nature Communications, 2019.

statistiXL, “Principal Component Analysis,” 2020. [Online]. Available: https://www.statistixl.com/features/principal-
components/.

Y. Liu, “Things about High-throughput Sequencing,” 2020. [Online]. Available:
https://www.jieandze1314.com/post/enposts/hts/.

QRA, “Functional vs Non-Functional Requirements: The Definitive Guide,” 2020. [Online]. Available:
https://gracorp.com/functional-vs-non-functional-requirements/.

PyTorch, “MSELQSS,” 2019. [Online]. Available:
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss.

K. Tsuyuzaki, H. Sato, K. Sato and I. Nikaido, “Benchmarking principal component analysis for large-scale single-cell
RNA-sequencing,” BMC, 2020.

B. J. Erickson, P. Korfiatis, Z. Akkus and T. L. Kline, “Machine Learning for Medical Imaging,” PubMed, 2017.

Javatpoint, “K-Means Clustering Algorithm,” 2018. [Online]. Available: https://www.javatpoint.com/k-means-
clustering-algorithm-in-machine-learning.

D. M. J. Garbade, “Understanding K-means Clustering in Machine Learning,” 2018. [Online]. Available:
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aal.

T. Wang, T. Johnson, J. Zhang and K. Huang, “Topological Methods for Visualization and Analysis of High
Dimensional Single-Cell RNA Sequencing Data,” PubMed Central, 2019.

L. Mclnnes, “How UMAP Works,” 2018. [Online]. Available: https://umap-
learn.readthedocs.io/en/latest/how_umap_works.html.

M. Ulmer, L. Ziegelmeier and C. M. Topaz, “A topological approach to selecting models of biological experiments,”
PLOS One, 2019.

V.Sze, Y.-H. Chen, T.-J. Yang and J. S. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,”
ResearchGate, 2017.

A. Harlan, “You Might Be Leaking Data Even if You Cross Validate,” 2018. [Online]. Available:
https://alexforrest.github.io/you-might-be-leaking-data-even-if-you-cross-validate.html.

J. Murugan and D. Robertson, “An Introduction to Topological Data,” arXiv, 2019.

87

Appendix

Appendix A - Ethics Review
Sage-HDR Form

SAGE-HDR

Response ID

640816-640807-69910323

la

1b

1.b.ii

ic

1d

Applicant Name

University of Surrey
email address

Level of research

Please enter your
University of Surrey
supervisor's name. If you
have more than one
supervisor, enter the
details of the individual
who will check this
submission.

Please enter your
supervisor's University
of Surrey email address.
If you have more than
one supervisor, enter the
details of the supervisor
who will check this
submission.

School or Department

Faculty

Project title

Please enter a brief
summary of your project
and its methodology in
250 words. Please
include information such
as your research
method/s, sample, where
your research will be
conducted and an
overview of the aims and
objectives of your
research.

Are you making an
amendment to a project
with a current University
of Surrey favourable
ethical opinion in place?

Does your research
involve any animals,
animal data or animal
derived tissue, including
cell lines?

Please read and confirm
the following statements.

Does your project
involve any of the
following: human
participants (including
human data and/or any
human tissue*); or is
your project linked to
engineering andlor the
physical sciences?

Completion date

28 Dec 2020, 15:08 (GMT)

Tom Wilson

w00550@surrey.ac.uk

Undergraduate

Tom Thome

tom.thore @surrey.ac.uk

Computer Science

FEPS - Faculty of Engineering and
Physical Sciences Sciences

Clustering of single-cell biological data

The aim of the project is to experiment with
clustering techniques that can be used to
detect hidden variation in single cell data.
Neural network architectures will be
implemented to extract a lower
representation of the data before clustering
methods are applied. All real world
biological data for testing and training of
the implemented neural networks will be
from open source datasets freely available
online based on previous experiments of
RNA sequencing

of human and animal cells. Some new
data will be artificially generated. No new
real world

experiments or lab work will be conducted
to gather genetic data.

NO

* |understand that | have to complete this
SAGE-HDR form to assess whether |
need an ethics review for human
research

I understand that upon completion of the
SAGE-HDR form, I need to complete
the SAGE-AR form to determine
whether | require an ethics review for
animal research

10

14

Does your project
involve any type of
human tissue research?
This includes Human
Tissue Authority (HTA)
relevant, or irrelevant
tissue (e.g. non-cellular
such as plasma or
serum), any genetic
material, samples that
have been previously
collected, samples being
collected directly from
the donor or obtained
from another researcher,
organisation or
commercial source.

Does your research
involve exposure of
participants to any
hazardous materials e.g.
chemicals, pathogens,
biological agents or does
itinvolve any activities or
locations that may pose
arisk of harm to the
researcher or
participant?

will any activities in your
research take place in
the Surrey Clinical
Research Building
(CRB)?

Will you be accessing
any organisations,
facilities or areas that
may require prior
permission? This
includes organisations
such as schools
(Headteacher
authorisation), care
homes (manager
permission), military
facilities etc. If you are
unsure, please contact
RIGO.

Will you be working with
any collaborators or third
parties to deliver any
aspect of the research
project?

Does your funder,
collaborator or other
stakeholder require a
mandatory ethics review
to take place at the
University of Surrey?

Are you undertaking
security-sensitive
research, as defined in
the text above?

NO

NO

NO

NO

NO

YES (please contact ethics@surrey.ac.uk)

NO

88

15

16

17

18

19

20

Does your project
process personal datal?
Processing covers any
activity performed with
personal data, whether
digitally or using other
formats, and includes
contacting, collecting,
recording, organising,
viewing, structuring,
storing, adapting,
transferring, altering,
retrieving, consulting,
marketing, using,
disclosing, transmitting,
communicating,
disseminating, making
available, aligning,
analysing, combining,
restricting, erasing,
archiving, destroying.

Does your project
require the processing of
special category2 data?

Please ensure that you
adhere to the data
protection guidance

Are you using a platform,
system or server® that is
external to the University
of Surrey to collect,
process andlor store any
personal andlor special
category data?

Does your research
involve any of the above
statements? If yes, your
study may require
external ethical review or
regulatory approval

Does your research
involve any of the
above? If yes, your study
may require external
ethical review or
regulatory approval

Does your project
require ethics review
from another institution?
(For example:
collaborative research
with the NHS REC, the
Ministry of Defence, the
Ministry of Justice andlor
other universities in the
UK or abroad)

NO 24 | Declarations

YES

Iam an UG or PGT studentand |
understand that | have to abide by the
‘Data protection and security for
undergraduate and postgraduate taught
student projects’ policy found at
https:/iresearch.surrey.ac.uk/ethics

NO
25 | Iflam conducting
NO research as a student:
NO
NO

.

.

| confirm that | have read the

University's Code on Good Research
Practice and ethics policy and all
relevant professional and regulatory
guidelines applicable to my research
and that | will conduct my research in
accordance with these.

I confirm that | have provided accurate
and complete information regarding my
research project

lunderstand that a false declaration or
providing misleading information will be
considered potential research
misconduct resulting in a formal
investigation and subsequent
disciplinary proceedings liable for
reporting to external bodies
lunderstand that if my answers to this
form have indicated that | must submit
an ethics and governance application,
that | will NOT commence my research
until a Favourable Ethical Opinion is
issued and govemnance checks are
cleared. If | do so, this will be
considered research misconduct and
resultin a formal investigation and
subsequent disciplinary proceedings
liable for reporting to external bodies.
lunderstand that if | have selected any
options on the higher, medium or lower
risk criteria then | MUST submit an
ethics and governance application
(EGA,) for review before conducting any
research. If | have NOT selected any of
the higher, medium or lower risk criteria,
lunderstand | can proceed with my
research without review and
acknowledge that my SAGE answers
and research project will be subjectto
audit and inspection by the RIGO team
ata later date to check compliance

| confirm that | have discussed my
responses to the questions on this form
with my supervisor to ensure they are
correct.

| confirm thatif | am handling any
information that can identify people,
such as names, email addresses or
audio/video recordings and images, |
will adhere to the security requirements
set outin the relevant Data protection
Policy

Sage-AR Form
SAGE-AR (Animal Research)

Response ID Completion date

638929-638920-69566078 16 Dec 2020, 17:15 (GMT)

1 | Applicant Name Tom Wilson
la | University of Surrey w00550@surrey.ac.uk
email address
1b | Level of research Undergraduate
1bi | Please enter your Tom Thorne

University of Surrey
supervisor's name. (If
you have more than one
supervisor, enter the
details of the supervisor
who will check this
submission).

1bii | Please enter your tom.thorne @surrey.ac.uk
supervisor's University
of Surrey email address.
(if you have more than
one supervisor, enter the

details of the supervisor
who will check this
submission)
Llc | School or Department Computer Science
2 Project title Clustering of single-cell biological data
3 Are you joining a NO

supervisors pre-existing
research project that has
already received
Favourable Ethical
Opinion?

8 | Are you making an NO
amendment to a project
with a current University
of Surrey favourable
ethical opinion in place?

9 | Does your research YES
involve ANY animals,
animal data or animal
derived tissue, including
cell lines?

10 Does your research YES
involve a protected
animal; data froma
protected animal or
tissue derived from a
protected animal,
including cell lines?

11 Is the work restricted to NO
the use of commercially
available established
cell-lines*?

12 Does any of the animal NO
work involve a regulated
procedure with respect
to the The Animal
(Scientific Procedures)

Act1986 ifitis to
conducted in the UK?

13 Does the work involve NO
tissues or cells from
Genetically Modified
Animals?

14 | Does your research NO

involve one of, ora
combination of, the
options above?

89

15

15.a

16

17

18

19

20

21

22

Does your study include
one of, or a combination
of, the statements
above?

Please specify the
numbers of the
statements applicable to
your project (e.g. 1, 3, 4)

Will you be accessing
any organisations,
facilities or areas that
may require prior
permission? This
includes organisations
such as schools
(Headteacher
authorisation), care
homes (manager
permission), veterinary
services etc. If you are
unsure, please contact
RIGO.

Does your research
involve exposure of
participants to any
hazardous materials e.g.
chemicals, pathogens,
biological agents or does
itinvolve any activities or
locations that may pose
arisk of harm to the
researcher or
participant?

Will you be working with
any collaborators or third
parties to deliver any
aspect of the research
project?

Does your research
involve lone working?

Is any research activity
being conducted outside
ofthe UK?

Does your project
process personal datal?
Processing covers any
activity performed with
personal data, whether
digitally or using other
formats, and includes
contacting, collecting,
recording, organising,
viewing, structuring,
storing, adapting,
transferring, altering,
retrieving, consulting,
marketing, using,
disclosing, transmitting,
communicating,
disseminating, making
available, aligning,
analysing, combining,
restricting, erasing,
archiving, destroying.

Does your project
require the processing of
special category2 data?

YES

NO

NO

NO

NO

NO

NO

NO

90

23

24

30

Are you using a platform,
system or server® that is
external to the University
of Surrey to collect,
process andlor store any
personal data?

Does the research
involving animals also
involve humans and their
personal data or some
other form of human
participation or human
involvement.

Declarations

NO 31

NO

32

1 confirm that | will uphold the core

elements of the concordat to support

research integrity: honesty, rigour,

transparency and open communication,

and care and respect.

I confirm that | have provided accurate

and complete information regarding my

research project

lunderstand that a false declaration or 33
providing misleading information will be
considered potential research
misconduct resulting in a formal
investigation and subsequent
disciplinary proceedings liable for
reporting to external bodies

I confirm that | have consulted the
University guidelines and available
ethical review assessments and confirm
that the answers provided above are
true to the best of my knowledge. | also
confirm that, where appropriate to the
nature of my research, | will abide by
Home Office regulations, University of
Surrey Research Integrity and
Governance requirements, local
research policies and procedures, and
all other appropriate University of
Surrey policies and guidance, in the
management, conduct and
administration of this research project.
lunderstand if | make any changes to
my research protocol then | should
consult the University guidelines and
available ethical review assessments
again to confirm that the changes do not
merit an Ethics committee review.
lundertake to abide by legal and ethical
requirements and any other guidelines
including the University of Surrey
Research Data Management policy. |
also confirm that there are appropriate
procedures for the collection, handling
and storage of samples and/or data and
the appropriate risk assessments had
been undertaken.

lunderstand that the project may be
monitored and audited by the University
of Surrey to ensure that it is carried out
in accordance with University of Surrey
code on good research practice, legal
and ethical requirements and any other
guidelines and policies. | agree to
maintain the highest standards of rigour
and integrity throughout the course of
this project.

I confirm that an appropriate process of
scientific criique has demonstrated that
this research proposal is worthwhile
and of high scientific quality and there is
adequate funding for the work planned
and necessary contracts and/or
agreements are in place.

If this SAGE-AR form
informed you that you
had to complete the
SAGE-HDR form as your
study may require a
human ethics review,
please confirm you will
complete the SAGE-HDR
form and will not
commence any research
until both animal and
human reviews are
complete.

Undergraduate and
Masters' students: If you
project includes lone-
working or working with
hazardous materials,
please confirm that your
supervisor has seen
your risk assessment.

For studies with
overseas research
components, including
work or travel:

If 1am conducting
research as a student:

Not applicable (my research does not
contain human participants, their data
andfor any human tissue)

Not applicable - 1 am a staff member and/or
1 am not lone-working or working with
hazardous materials

Not applicable - no component of my
research is overseas.

| confirm that my supervisor has checked
the responses on this form are correct.

91

Appendix B - Experiment Results
Here additional print screens and tables of results are documented from Testing and Validation.

Testing the Initial Model

Input:
tensor([[©., ©., @., , 2., @., 2.1,
[o., 11., 2., s @., 0., 6.],
[@., ., 0., s 1o, 0., 2.,
e
[e., o., 1., , 0., 1., 1.1,
[2., 2., 2., > 0., 0., 6.],
[e., ., 7., > 8., 0., 5.0D)
Decoded:
tensor([[1., 3., 3., ..., 9., 0., 3.],
[1., €., 2., ..., 8., 0., 3.1,
[1., 2., 3., ..., 8., 0., 3.1,
B
[1., ., 1., ..., 2., 0., @.],
[1., 1., 3., ..., @., 0., 3.],
[2., 2. 9., 3.]], device="cuda:e",

. 3 3uy e, B.,
grad_fn=<RoundBackward>)
Batch average accuracy: 23.26%

Testing average accuracy: 32.83269219891571%

Figure 129: Print screen from testing the initial model showing a batch’s input tensor, output tensor, accuracy, and average
accuracy across all batches

Activation Function

RelLU-RelLU RelLU-Linear

Input:

Input:
t 2., 9., 8. 0., 0., 8.
tensor([[2., @., O., ., 8., 0., 0.1, ensor([[2., e., @., , 0., 0., 0.],
fe.. 0., 2., el el [0 ©.) 24y 2uuy @4, @., 0.],
0., 8., 1., ..., 0., 0., @.], [e., e., 1., » 0., 0., 0.],
[e., ., 1., ..., 0., 0., .]]) le., e., 1., ; 0., 0., 0.1])
Decoded: Decoded:
tensor([[@., @., 8., ..., 1., 1., 1.1, tensor([[0., 1., 2., ..., @., 0., 8.],
[1., 0., 1., 0., 0., 0.0, [0y 2.5 10y 2uuy @4, @., 0.],
[8.) By 1uy +evy 8., B., 0.], [e., 1., 1. .y 0., 0., 08.],]
[e., 8., ©., ..., ©., 8., 1.]], device="cuda:e", [e., ., 1., ..., 8., @., 0.]], device="cuda:@
grad_fn=<RoundBackward>) grad_fn=<RoundBackward>)
Batch average accuracy: 38.41% Batch average accuracy: 42.41%
Input: Input:
tensor([[1., ®., ©., ..., 8., 8., 8.], tensor([[1., ., @., ..., @., 8., @.],
[e., 8., 3., ..., 1., 0., 8.]]) [6., 8., 3., ..., 1., 0., 6.]])
Decoded: Decoded:
tensor([[@., 0., ©., ..., 1., 8., 0.], tensor([[1., 2., 2., ..., @., 0., 0.],)
[e., 0., 2., ..., 0., 1., 0.]], device='cuda:®", [e., 1., 3., ..., 0., 0., 0.]], device="cuda:@
grad_fn=<RoundBackward>) grad_fn=<RoundBackward>)
Batch average accuracy: 32.49% Batch average accuracy: 35.93%
Testing average accuracy: 35.66933638443936% Testing average accuracy: 38.76553251601191%

Figure 130: Two batch’s input tensors, outputs, accuracy, and average accuracy across all batches for ReLU-RelU (left) and RelLU-
Linear (right)

RelU +PRelU Linear + Linear

Input: Input:

tensor([[2., ©., @., .5 8., 8., 0.], tensor([[2., ©., o., ., 8., 0., 0.]
[e., @., 2., ., 8., 0., 0.], [e., o., 2., ., 8., 0., 0.],
[6., 0., 1., ., 0., 8., 0.], [e., @., 1., ., 8., 0., 0.1,
[e., ®., 1., ..., ©., 6., @.]1]) [e., 6., 1., . 0., 8., 0.]])

Decoded: Decoded:

tensor([[e., 2., 0., ..., 2., @., @.], tensor([[@., ©., 1., ..., @., 0., 1.]
[6., 2., 2., ..., 0., 8., 1.1, [1., 2., 1., ..., @., 0., 1.],
[e., 1., @., ..., @., 8., @.], [1., 1., ., ..., @., 0., @.],
[e., ©., 2., ..., @., 1., 0.]], device="cuda:e", [e., ., 1., ..., @., 8., ©.]], device="cuda:o"

grad_fn=<RoundBackward>) grad_fn=<RoundBackward>)

Batch average accuracy: 35.53% Batch average accuracy: 41.4%

Input: Input:

tensor([[1., 6., ., , 8., 8., 0.], tensor([[1., €., 0., ..., 8., 0., 0.]
[e., ©., 3., ..., 1., 8., 2.]]) [e., @., 3., ..., 1., 0., 0.1])

Decoded: Decoded:

tensor([[e., 1., 2., ..., 8., 8., @.], tensor([[1., 1., 1., ..., @., 1., 2.
[e., 1., ., ..., 1., @., 0.]], device="cuda:e’, [e., ©., 2., ..., 1., 0., 1.]], device="cuda:@"

grad_fn=<RoundBackward>) grad_fn=<RoundBackward>)
Batch average accuracy: 28.48% Batch average accuracy: 34.68%
Testing average accuracy: 32.23660240594197% Testing average accuracy: 38.2560915587487%

Figure 131: Two batch’s input tensors, outputs, accuracy, and average accuracy across all batches for ReLU-PRelU (left) and Linear-
Linear (right)

92

Training the Optimised Network
K-Fold Cross Validation

Benchmarking Data

| Name | Type | Params
o | encoder | sequential | 2.1 M
1 | decoder | Sequential | 2.1 M
4.2 M Trainable params
[} Non-trainable params
4,2 M Total params
16.947 Total estimated model params size (MB)

Validation sanity check: 0%

Number of Training Samples: 601
Number of Validation Samples: 151

Loss per fold: [79.87559509277344, 104.20124816894531, 83.50093841552734, 101.43386840820312, 103.49337005615234]
Best fold: ©

Figure 132: Results of 5-fold cross validation for the benchmarking dataset

Simulated Data

| Name | Type | Params
@ | encoder | sequential | 2.1 M
1 | decoder | Sequential | 2.1 M
4.2 M Trainable params
a Non-trainable params
4.2 M Total params

16.947 Total estimated model params size (MB)

Validation sanity check: 0%

Number of Training Samples: 1200

Number of validation Samples: 3@

Loss per fold: [96.66696166992188, 96.55107879638672, 105.4653091430664, 185.66371154785156, 108.87251739501953]
Best fold: 1

Figure 133: Results of 5-fold cross validation for the simulated dataset

Mouse Cortex Data

| Mame | Type | Params

@ | encoder | sequential | 139 K
1 | decoder | Sequential | 14@ K

279 K Trainable params
Non-trainable params
279 K Total params
1.119 Total estimated model params size (MB)

Validation sanity check: 0%

Number of Training Samples: 2004
Number of validation Samples: 5@1

Loss per fold: [23.357107162475586, 25.688718795776367, 24.767446517944336, 29.331438064575195, 29.261680603027344]
Best fold: @

Figure 134: Results of 5-fold cross validation for the mouse cortex dataset

93

Testing

Benchmarking Data Simulated Data
Input: Input:
tensor([[@., ., 1., ..., 0., 0., 0.], tensor([[2., ©., 2., , 10., ., 1.],
[e., 8., 4., ..., 8., 0., 3.1]) [e., 1., 7., , 0., 3., e.],
Encoded: [2., ©., 3., ey 34, 1., e.],
tensor([[-7@.1457, -8.5272, 2.2225, -61.6991, -70.3221, -1.5425, [2., o, 1., » 15, e., 11D
-26.1585, -188.2877, 34.5224, 38.2465, 80.6506, 63.2564, Encoded:
-22.8477, 233.7038, -105.3474, -47.9143], tensor([[-2.9273e+01, -1.2050e+02, 3.1610e+01, 3.6534e+01, 2.9003e+01,
[-38.9478, 134.2433, -22.5568, -42.3778, -271.6851, -85.6588, i'iggge+gil i'i;fie+gil ‘i'ggzge+gil ‘i':igie+gil '§'§§5i9+22’
51,5675, -378.4795, -20.4906, -1.7884, 17.0424, 145.6059, _2.355921911 -131de+0l, 4.89208401, -7.4d>led0l, -5.8591e+02,
- - . s
pecoded: 89.4499, 449.1552, 24.4117, 81.9819]]) [4.3418e+80, 3.9310e+01, -1.9103e+01, -4.8057e+01, 5.6760e+01,
ecoded: 7.6769e400, 3.2309e+01, 1.64826+01, 7.3766€400, -4.6713e+01,
tensnr([%g., g" i'! s g" g E i-%i) 4.49650-81, -7.0918¢+00, -5.5051e+01, -3.1049401, -3.7399e402,
s @y 4, wevy 1., 0., 1. 1.1783e+01],
Batch average accuracy: 37.25% [-1.7089e+01, -5.6623e+01, 6.6960e+01, 2.4678e+81, 1.2921e+01,
) 1.7026e+02, 4.2372e+00, -4.9679e+00, 1.7283e+01, -5.9646e+01,
Testing average accuracy: 39.945132825383844% 9.8561e+00, 1.7942e+01, -5.6028¢+00, -2.6169e+01, -3.9861e+02,
-3.7912e+01],
. .. . [5.5243e+01, 3.6151e+00, 1.4449e+01, -4.8631e+01, 6.0673e+01,
Figure 136: Batches and accuracy dfter training the benchmarking 5.32180401, -1.44500401, 2.1168¢+01, -5.81116480, 3.70350400,
5.4735e+01, -4.1914e+01, -2.3165e+01 2.9204e+01, -5.0824e+02
data autoencoder ; ’ ; ’ ’

-1.7985e+81]])

Decoded:
tensor([[6., @., 4., , 5., 1., 8.],
[4., 0., 2., , 3., 1., 0.1,
Mouse Cortex Data [4., 8., 2., ..., 4., 0., 08.],
[60y 0uy &ey vuvy 6.y 2., 0.1])
Batch average accuracy: 33.74%
Input:
tensor([[1., 18., 2., o 1., 8., e.], Testing average accuracy: 36.82534612581976%
[e., @., ©., ..., @., ., 1.1,
E g g 2 E g 2 g-h) Figure 135: Batches and accuracy after training the

Encoded: simulated data autoencoder
tensnr([[125.2051, 423.6984, -106.4994, -180.3438, 65.5065, -269.8898,
-238.1715, 74.2716, -1@3.9874, 60.5206, 60.0718, 91.3239,
-428.1793, -13.3151, 57.9009, 111.5563],
[44.3129, 39.0782, -60.5256, 9.1209, -134.1934, -45.5595,
68.2319, -23.9267, -141.2930, 14.3040, 61.2943, -80.2577,
-97.2920, 150.2702, -135,3218, 26.2234],

[216.3407, 918.9120, 23,1305, -458.6349, 129.3726, -376.1922,
-541.6882, -25.8886, -451.6561, -14.6268, 380.8749, 46.6436,
-777.2988, -231.2023, -142.9618, 124.5812],

[83.5522, 362.4302, -131.1443, -161.09e4, 65.1543, -281.6749,
-256.9871, 129.9618, -185.5186, 56.0630, 45.4922, 65.8867,
-406.3011, -10.9974, 116.6847, 113.4843]])

Decoded:

tensor([[0©., 1., 1., , 8., 1., 8.1,
[6., 1., 2., , 1., 1., 0.1,
[e., 1., @., , 1., 1., @.],
[e., @., 1., , 8., 1., 0.]])

Batch average accuracy: 50.89%

Testing average accuracy: 50.869776119403%

Figure 137: Batches and accuracy after training the simulated data autoencoder

Clustering
K-Means

The tables below document the effects of encoding, standardization, and principal components on the
performance of k-means clustering. The best number of principal components for each variation has been
underlined, and the best overall results coloured red.

Benchmarking Data

Encod Unencoded

Raw Standardized ‘ Raw Standardized
2PCs 3PCs ‘ 4PC 2PCs 3PCs 7PCs ‘ 2 PCs ‘ 3PCs 2PCs 3PCs

Accuracy

ARI

Incorrectly
identified cells

Table 20: Results of PCA and k-means on the benchmarking data

Simulated Data
Encoded Unencoded

Raw ‘ Standardized Raw Standardized

2 PCs ‘6PCs ‘ZPCS 9PCs 2PCs 19PCs 2PCs 5PCs

Accuracy

ARI

Incorrectly
identified cells

Table 21: Results of PCA and k-means on the simulated data

Mouse Cortex Data
Unencoded
Standardized Raw Standardized
2PCs | 15PCs 2PCs 18PCs 2PCs 17PCs

Accuracy

ARI

Silhouette
Coefficient

Incorrectly
identified cells

Table 22: Results of PCA and k-means on the mouse cortex data
Encoded Unencoded
Raw ‘ Standardized Raw Standardized
2PCs ‘ZPCs ‘ic.c, 2PCs 3PCs 2PCs |16PCs
Accuracy

ARI

Silhouette
Coefficient

Incorrectly
identified cells

Table 23: Results of k-means combined with PCA and t-SNE with perplexity 30 on the mouse cortex data

t-SNE Perplexity
‘10 ‘20 100 300 600 ‘

Accuracy

ARI

Silhouette
Coefficient

95

Incorrectly 350 358 351 330 315 392
identified cells

Table 24: Results of k-means and t-SNE for different perplexity values on the mouse cortex data

Agglomerative Hierarchical Clustering

The tables below document the effects of encoding, standardization, and principal components on the

performance of hierarchical clustering.

Benchmarking Data

Encoded Unencoded

Raw ‘ Standardized RE ‘ Standardized
2 PCs ‘ 3 PCs ‘ 2PCs 3PCs 2PCs 3PCs ‘ 2 PCs ‘ 3PCs

Accuracy

ARI

Incorrectly
identified cells

Table 25: Results of PCA and agglomerative hierarchical clustering on the benchmarking data

Simulated Data
Encoded Unencoded
Raw ‘ Standardized Raw ‘ Standardized
2 PCs ‘&C's ‘ZPCs 9PCs 2PCs 7PCs ‘ZPCS ‘iCs

Accuracy

ARI

Incorrectly
identified cells

Table 26: Results of PCA and agglomerative hierarchical clustering on the simulated data

Mouse Cortex Data

Encoded Unencoded

Raw Standardized Standardized

Accuracy

ARI

Silhouette
Coefficient

Incorrectly
identified cells

Table 27: Results of PCA and agglomerative hierarchical clustering on the mouse cortex data

96

Alternative Algorithms

The tables below show the experiment results that achieved the highest accuracy for six different clustering
algorithms. The tables document the best combinations between encoding, standardization, and the best
number of components for dimensionality reduction.

Benchmarking Data

Principal Component Analysis (PCA)

Accuracy ‘Incorrect Cells Principal Components | Encoded Standardized

Hierarchical
BIRCH

Mini Batch
K-Means

Spectral

Gaussian
Mixture

Table 28: Benchmarking data alternative clustering algorithms results for PCA

Independent Component Analysis (ICA)
Accuracy Incorrect Cells Independent Components | Encoded Standardized

K-Means

Hierarchical

BIRCH

Mini Batch
K-Means

Spectral

Gaussian
Mixture

Table 29: Benchmarking data alternative clustering algorithms results for ICA

Non-negative matrix factorization (NMF)
Encoded Standardized
K-Means

Hierarchical
BIRCH

Mini Batch
K-Means

Spectral

97

el 99.8% 2 4 False True
Mixture
Table 30: Benchmarking data alternative clustering algorithms results for NMF
PCA with t-SNE
Accuracy Incorrect Cells Principal Encoded | Standardized

Components

K-Means 99.67%

I 99.67% 3 2 True True
BIRCH 99.67% 3 2 True True
r_‘:,l'ezit:h 99.67% |3 2 True True
Spectral 99.67% 3 2 True True
f/lan‘:tsj';" 99.67% 3 2 True True

Table 31: Benchmarking data alternative clustering algorithms results for PCA and t-SNE

Simulated Data
Principal Component Analysis (PCA)

Incorrect Cells Encoded

Accuracy

K-Means

Standardized

Hierarchical

BIRCH

Mini Batch
K-Means

Spectral

Gaussian
Mixture

Table 32: Simulated data alternative clustering algorithms results for PCA

Independent Component Analysis (ICA)

Accuracy Incorrect Cells Independent Components Encoded

K-Means

Standardized

Hierarchical

BIRCH

Mini Batch
K-Means

Spectral

98

Gaussian

. 100% 9 Fal Fal
Mixture 00 0 alse alse

Table 33: Simulated data alternative clustering algorithms results for ICA

Non-negative matrix factorization (NMF)

Accuracy Incorrect Cells Basis Components Encoded | Standardized

K-Means

Hierarchical
BIRCH

Mini Batch
K-Means

Spectral

Gaussian
Mixture

Table 34: Simulated data alternative clustering algorithms results for NMF

PCA with t-SNE

Accuracy Incorrect Cells Encoded | Standardized

Principal Components ‘

K-Means 2

Hierarchical

BIRCH

Mini Batch
K-Means

Spectral

Gaussian
Mixture

Table 35: Simulated data alternative clustering algorithms results for PCA and t-SNE

